Skip to main content
Log in

Research evidence on the benefits of IBL

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This paper describes the current state of knowledge of empirical studies in the broader sense dealing with inquiry-based learning (IBL) of mathematics and science subjects in schools and universities. The advantages, disadvantages, and effects on relevant outcomes that students can achieve in IBL classrooms are discussed from the aspect of further developing teaching quality. First, the conceptual aspects of IBL are considered briefly to show the background of the studies and the results are categorized. Secondly, references are given with explanations or possible reasons for the results that are not always consistent and, at times, even contradictory. Finally, conclusions from current studies including this overview are drawn with respect to open scientific questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Expeditionary Learning and Co-nect provide school leaders and teachers with professional development, curriculum planning resources, and new school structures to boost student engagement, character, and achievement through ‘authentic learning’—linking school mathematics with real-life mathematics.

References

  • Amaral, O., Garrison, L., & Klentschy, M. (2002). Helping English learners increase achievement through inquiry-based science instruction. Bilingual Research Journal, 26(2), 213–239.

    Article  Google Scholar 

  • Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12.

    Article  Google Scholar 

  • Artigue, M., & Blomhøj, M. (2013). Examples of inquiry-based activities with reference to different theoretical frameworks in mathematics education research. ZDMThe International Journal on Mathematics Education, 45(6) (this issue). doi:10.1007/s11858-013-0506-6.

  • Asmussen, S. (2009). Der Einfluss der MINIPHÄNOMENTA auf die methodisch-formalen naturwissenschaftlichen Fähigkeiten von Schülerinnen und Schülern der Primarstufe. Skizze einer Interventionsstudie im Kontext eines naturwissenschaftlichen Bildungsprojekts. Widerstreit Sachunterricht, 13. http://www.widerstreit-sachunterricht.de/ebeneI/superworte/naturwiss/mini2.pdf (Accessed 27 July 2012).

  • Barron, B., & Darling-Hammond, L. (2008). Teaching for meaningful learning: A review of research on inquiry-based and cooperative learning. http://www.edutopia.org/pbl-research-annotated (Accessed Sep 2013).

  • Beinbrech, C. (2003). Problemlösen im Sachunterricht der Grundschule. Eine empirische Studie zur Gestaltung von Lehr-Lernumgebungen im Hinblick auf die Förderung des Problemlöseverhaltens im Sachunterricht. http://miami.uni-muenster.de/servlets/DerivateServlet/Derivate-1307/Diss_Beinbrech.pdf (Accessed 12 Sep 2013).

  • Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for Research in Mathematics Education, 29(1), 41–62.

    Article  Google Scholar 

  • Brown, A., & Campione, J. (1994). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229–270). Cambridge, MA: MIT Press.

  • Chan, C. M. E. (2006). Engaging students in open-ended mathematics problem tasks—a sharing on teachers’ production and classroom experience (Primary). Paper presented at ICMI-EARCOME3. http://math.ecnu.edu.cn/earcome3/TSG2.htm (Accessed 12 Sep 2013).

  • Chi, M. T. H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In R. Glaser (Ed.), Advances in instructional psychology (pp.161–238). Mahwah, NJ: Erlbaum.

  • Colburn, A. (2000). An inquiry primer. Science Scope, 3, 42–44.

    Google Scholar 

  • Cronbach, L. J. (1981). Die Logik von Experimenten über Entdeckung. In H. Neber (Ed.), Entdeckendes Lernen (pp. 153–165). Weinheim: Beltz.

  • Diezmann, C. M., Watters, J. J., & English, L. D. (2001). Implementing mathematical investigations with young children. In J. Bobis, B. Perry & M. Mitchelmore (Eds.), Numeracy and beyond. Proceedings 24th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 170–177). Sydney: MERGA.

  • Egan, D. E., & Greeno, J. E. (1981). Der Erwerb kognitiver Strukturen durch Entdeckendes- und Regellernen. In H. Neber (Ed.), Entdeckendes Lernen (pp. 190–207). Weinheim: Beltz.

    Google Scholar 

  • Ergül, R., Simsekli, Y., Calis, S., Özdilek, Z., Göcmencelebi, S., & Sanli, M. (2011). The effects of inquiry-based science teaching on elementary school students’ science process skills and science attitudes. Bulgarien Journal of Science and Education Policy (BJSEP), 5(1), 48–68.

    Google Scholar 

  • Fradd, S. H., Lee, O., Suutman, F. X., & Saxton, M. K. (2002). Promoting science literacy with English learners through instructional materials development: A case study. Bilingual Research Journal, 25(4), 479–501.

    Google Scholar 

  • Gallagher, S., Stepien, W., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly, 36(4), 195–200.

    Article  Google Scholar 

  • Germann, P. J., Haskins, S., & Auls, S. (1996). Analysis of nine high school biology laboratory manuals: Promoting science inquiry. Journal of Research in Science Teaching, 33(5), 337–357.

    Article  Google Scholar 

  • Hartinger, A. (2001). Entdeckendes Lernen. In W. Einsiedler, M. Götz, H. Hacker, J. Kahlert, R. W. Keck, & U. Sandfuchs (Eds.), Handbuch Grundschulpädagogik und Grundschuldidaktik (pp. 330–335). Bad Heilbrunn: Julius Klinkhardt.

    Google Scholar 

  • Hattie, J. A. C. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement. London and New York: Routledge.

  • Hermann, G. (1981). Lernen durch Entdeckung: Eine kritische Erörterung von Forschungsarbeiten. In H. Neber (Ed.), Entdeckendes Lernen (pp. 166–189). Weinheim: Beltz.

    Google Scholar 

  • Kahle, J. B., Meece, J., & Scantlebury, K. (2000). Urban African-American middle school science students: Does standards-based teaching make a difference? Journal of Research in Science Teaching, 37(9), 1019–1041.

    Article  Google Scholar 

  • Kahn, P., & O’Rourke, K. (2005). Understanding enquiry-based learning. In T. Barret, I. Mac Labhrainn, & H. Fallon (Eds.), Handbook of enquiry & problem based learning. Galway: CELT.

    Google Scholar 

  • Kirschner, A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661–667.

    Article  Google Scholar 

  • Klauer, K., & Leutner, D. (2007). Lehren und Lernen. Einführung in die Instruktionspsychologie. Weinheim: Beltz.

    Google Scholar 

  • Kremer, A., & Schlüter, K. (2006). Analyse von Gruppensituationen beim forschend-entdeckenden Lernen. Ergebnisse einer ersten Studie. Erkenntnisweg Biologiedidaktik, 5, 145–156.

    Google Scholar 

  • Leikin, R., & Rota, S. (2006). Learning through teaching: A case study on the development of a mathematics teacher’s proficiency in managing an inquiry-based classroom. Mathematics Education Research Journal, 18(3), 44–68.

    Article  Google Scholar 

  • Lind, G., Friege, G., Kleinschmidt, L., & Sandmann, A. (2004). Beispiellernen und Problemlösen. Zeitschrift für Didaktik der Naturwissenschaften, 10, 29–49.

    Google Scholar 

  • Maaß, K. (2011). Report about the survey on inquiry-based learning and teaching in the European partner countries. EU-Project Information: PRIMAS. http://www.primas-project.eu (Accessed 12 Sep 2013).

  • Maaß, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry-based learning. ZDMThe International Journal on Mathematics Education, 45(6) (this issue). doi:10.1007/s11858-013-0505-7.

  • Marx, R. W., Blumenfeld, P. C., Krajcik, J. S., Fishman, B., Soloway, E., Geier, R., et al. (2004). Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform. Journal of Research in Science Teaching, 41, 1063–1080.

    Article  Google Scholar 

  • McCarty, T. L., Hadley Lynch, R., Wallace, S., & Benally, A. (1991). Classroom inquiry and Navajo learning styles: A call for reassessment. Anthropology and Education Quarterly, 22(1), 42–59.

    Article  Google Scholar 

  • Meyer, D. K., Turner, J. C., & Spencer, C. A. (1997). Challenge in a mathematics classroom: Students’ motivation and strategies in project-based learning. Elementary School Journal, 97, 501–521.

    Article  Google Scholar 

  • Moreno, R. (2004). Decreasing cognitive load in novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99–113.

    Article  Google Scholar 

  • Neber, H. (2001). Entdeckendes Lernen. In D. Rost (Ed.), Handwörterbuch Pädagogische Psychologie (pp. 115–121). Weinheim: Beltz.

    Google Scholar 

  • Nelson, T. H., & Moscovici, H. (1998). Shifting from activitymania to inquiry. Science and Children, 35(4), 14–17.

    Google Scholar 

  • Newmann, F. M., Marks, H. M., & Gamoran, A. (1995). Authentic pedagogy: Standards that boost student performance. Issues in Restructuring Schools, 8, 1–4.

    Google Scholar 

  • Newmann, F. M., Marks, H. M., & Gamoran, A. (1996). Authentic pedagogy and student performance. American Journal of Education, 104(4), 280–312.

    Article  Google Scholar 

  • Nußbaum, A., & Leutner, D. (1986). Entdeckendes Lernen von Aufgabenlösungsregeln unter verschiedenen Anforderungsbedingungen. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 18, 153–164.

    Google Scholar 

  • Palmer, S. (2002). Enquiry-based learning can maximise a student’s potential. Psychologie Learning and Teaching, 2(2), 82–86.

    Article  Google Scholar 

  • Penuel, W. R., Means, B., & Simkins, M. B. (2000). The multimedia challenge. Educational Leadership, 58, 34–38.

    Google Scholar 

  • Perso, T. (2003). Improving Aboriginal numeracy. Perth: MASTEC.

    Google Scholar 

  • Phelan, A. M. (2005). A fall from (someone else’s) certainty: Recovering practical wisdom in teacher education. Canadian Journal of Education/Revue Canadienne de l’éducation, 28(3), 339–358.

    Article  Google Scholar 

  • Puntambekar, S., Stylianou, A., & Goldstein, J. (2007). Comparing classroom enactments of an inquiry curriculum: Lessons learned from two teachers. Journal of the Learning Sciences, 16(1), 81–130.

    Google Scholar 

  • Rains, F. V., Archibald, J. A., & Deyhle, D. (2000). Introduction: Through our eyes and in our own words. International Journal of Qualitative Studies in Education, 13(4), 337–342.

    Article  Google Scholar 

  • Roy, M., & Chi, M. T. H. (2005). Self-explanation in a multi-media context. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 271–286). Cambridge, MA: Cambridge University Press.

    Chapter  Google Scholar 

  • Scruggs, T. E., & Mastropieri, M. A. (1993). Reading versus doing: The relative effects of textbook based and inquiry-oriented approaches to science learning in special education classrooms. Journal of Special Education, 27(1), 1–15.

    Article  Google Scholar 

  • Stepien, W. J., Gallagher, S. A., & Workman, D. (1993). Problem-based learning for traditional and interdisciplinary classrooms. Journal for the Education of the Gifted, 16(4), 338–345.

    Google Scholar 

  • Sweller, J., Mawer, R., & Howe, W. (1982). The consequences of history-cued and means-ends strategies in problems solving. American Journal of Psychology, 95, 455–484.

    Article  Google Scholar 

  • Tafoya, E., Sunal, D., & Knecht, P. (1980). Assessing inquiry potential: A tool for curriculum decision makers. School Science and Mathematics, 80, 43–48.

    Article  Google Scholar 

  • Thomas, J. W. (2000). A review of research on project-based learning. http://www.bie.org/index.php/site/RE/pbl_research/29 (Accessed 12 Sep 2013).

  • Winch, W. A. (1913). Inductive versus deductive methods of teaching. Baltimore: Warwick and York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Bruder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruder, R., Prescott, A. Research evidence on the benefits of IBL. ZDM Mathematics Education 45, 811–822 (2013). https://doi.org/10.1007/s11858-013-0542-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-013-0542-2

Keywords

Navigation