Skip to main content

Advertisement

Log in

Inquiry-based learning for students, teachers, researchers, and representatives of educational administration and policy: reflections on a nation-wide initiative fostering educational innovations

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

International comparative studies such as TIMSS and PISA have had a considerable influence on the national educational policy in many countries. In Austria, as a reaction to the disappointing TIMSS 1995 results at the upper secondary level, a national initiative with the aim to foster mathematics and science education was launched in 1998: the IMST project. Due to specific challenges of the Austrian educational system, it has undergone several adaptations, but is still running. One of the project’s basic interventions is to promote teachers’ investigation into their own work. It is assumed that this supports the teachers’ critical stance towards innovation and inquiry, which in turn is an important basis for disseminating inquiry-based learning. A general look at the whole project and a specific look into one research project of IMST are used as opportunities to reflect on the complex interconnection and natural tension between the goal of promoting students’ IBL and its sustainable dissemination on a large scale. The paper introduces the project’s theoretical framework and genesis, provides exemplary research results, and reflects on its impact. The paper finishes with five “lessons learnt” from IMST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. IMST = originally, Innovations in Mathematics and Science Teaching (1998–1999); later, Innovations in Mathematics, Science, and Technology Teaching (2000–2009); since 2010—motivated by adding German studies as one more subject—Innovations Make Schools Top.

  2. TIMSS = originally, Third International Mathematics and Science Study (1995, 1999), now known as the Trends in International Mathematics and Science Study (2003, 2007, 2011).

  3. MINT is, like the English equivalent STEM, an abbreviation (Mathematik, Informatik, Naturwissenschaften und Technik), later named MINDT when the subject German language (Deutsch) was added.

  4. PISA = Programme for International Student Assessment (2000, 2003, 2006, 2009, 2012).

  5. For example, research reports on teachers’ growth changed tremendously from the 1990s to the 2010s. This article explicitly does not use only recent literature to reconstruct the project’s genesis and results, but rather takes an evolutionary stance, reflecting the concepts and theoretical considerations as they developed within the project.

  6. First, the project was only financed for 1 year; later it became extended for three additional years (which influenced its goals and planning).

  7. It was recommended to start with MINT at the secondary level as a pilot, and later to consider enlarging it for other subjects and levels.

  8. Centre of Instructional and School development (IUS) at the AAU.

References

  • Altrichter, H., Feldman, A., Posch, P., & Somekh, B. (2008). Teachers investigate their work: An introduction to action research across the professions (2nd ed.). London, UK: Routledge.

    Google Scholar 

  • Altrichter, H., & Posch, P. (1996). Mikropolitik der Schulentwicklung. Innsbruck, Austria: Studienverlag.

    Google Scholar 

  • Altrichter, H., & Posch, P. (2009). Action research, professional development and systemic reform. In S. Noffke & B. Somekh (Eds.), Educational action research (pp. 213–225). Los Angeles, CA: Sage.

    Google Scholar 

  • Baumert, J., Klieme, E., & Watermann, R. (1998). Jenseits von Gesamttest- und Untertestwerten: Analyse differentieller Itemfunktionen am Beispiel des mathematischen Grundbildungstests der Dritten Internationalen Mathematik- und Naturwissenschaftsstudie der IEA (TIMSS). In H.-J. Herber & F. Hoffmann (Eds.), Schulpädagogik und Lehrerbildung (pp. 301–324). Innsbruck, Austria: Studienverlag.

    Google Scholar 

  • Baumert, J., & Watermann, R. (2000). Institutionelle und regionale Variabilität und die Sicherung gemeinsamer Standards in der gymnasialen Oberstufe. In J. Baumert, W. Bos, & R. Lehmann (Eds.), TIMSS/III. Dritte Internationale Mathematik- und NaturwissenschaftsstudieMathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn, Vol. 2 (pp. 317–372). Opladen, Germany: Leske & Budrich.

  • Dalin, P. (1999). Theorie und Praxis der Schulenwicklung. Neuwied, Germany: Luchterhand.

    Google Scholar 

  • DEZA, Direktion für Entwicklungshilfe und Zusammenarbeit (2002). Glossar deutsch [German glossary]. Bern, Switzerland: DEZA.

  • Elliott, J. (1991). Action research for educational change. Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Ernest, P. (Ed.). (1994). Mathematics, education and philosophy: An international perspective. London, UK: Falmer Press.

    Google Scholar 

  • Fullan, M. (2001). The new meaning of educational change (3rd ed.). New York: Teachers College Press.

    Google Scholar 

  • Fullan, M. (2006). The future of educational change: system thinkers in action. Journal of Educational Change, 7, 113–122.

    Article  Google Scholar 

  • Guskey, T. R. (2000). Evaluating professional development. Thousand Oaks, CA: Corwin Press.

    Google Scholar 

  • Hanfstingl, B., Andreitz, I., Müller, F. H., & Thomas, A. (2010). Are self-regulation and self-control mediators between psychological basic needs and intrinsic teacher motivation? Journal for Educational Research Online, 2(2), 55–71.

    Google Scholar 

  • Hanfstingl, B., & Gnambs, T. (in preparation). Satisfaction of basic psychological needs and the decline of academic intrinsic motivation during adolescence.

  • Hargreaves, A., & Fink, D. (2003). Sustaining leadership. Phi Delta Kappan, 84(9), 693–700.

    Google Scholar 

  • Heintel, P., Krainer, L., & Paul-Horn, I. (Eds.). (2003). Interventionswissenschaft—Interventionsforschung. Erörterungen zu einer Prozesswissenschaft vor Ort. Klagenfurter Beiträge zur Interventionsforschung, Vol. 2 (pp. 85–102). Klagenfurt, Austria: IFF.

    Google Scholar 

  • Ingvarson, L., Meiers, M., & Beavis, A. (2005). Factors affecting the impact of professional development programs on teachers’ knowledge, practice, student outcomes and efficacy. Education Policy Analysis Archives, 13(10), 1–28.

    Google Scholar 

  • Krainer, K. (1993). Powerful tasks: a contribution to a high level of acting and reflecting in mathematics instruction. Educational Studies in Mathematics, 24(1), 65–93.

    Article  Google Scholar 

  • Krainer, K. (1998). Some considerations on problems and perspectives of inservice mathematics teacher education. In C. Alsina, et al. (Eds.), 8th International Congress on Mathematics Education: Selected lectures (pp. 303–321). Sevilla, Spain: S.A.E.M. Thales.

    Google Scholar 

  • Krainer, K. (2001). Teachers’ growth is more than the growth of individual teachers: the case of Gisela. In F.-L. Lin & T. Cooney (Eds.), Making sense of mathematics teacher education (pp. 271–293). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Krainer, K. (2003a). Innovations in Mathematics, Science and Technology Teaching (IMST2). Initial outcome of a nation-wide initiative for upper secondary schools in Austria. Mathematics Education Review, 16(April 2003), 49–60.

    Google Scholar 

  • Krainer, K. (2003b). Teams, communities & networks. Editorial. Journal of Mathematics Teacher Education, 6, 93–105.

    Article  Google Scholar 

  • Krainer, K. (2005). IMST3. Ein nachhaltiges Unterstützungssystem. IMST3. A sustainable support system. Austrian Education News (Hrsg. BMBWK), 44(2005), 8–14.

  • Krainer, K. (2011). Teachers as stakeholders in mathematics education research. In B. Ubuz (Ed.), Proceedings of the 35th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 47–62). Ankara, Turkey: Middle East Technical University.

    Google Scholar 

  • Krainer, K., Dörfler, W., Jungwirth, H., Kühnelt, H., Rauch, F., & Stern, T. (Eds.). (2002). Lernen im Aufbruch. Innsbruck, Austria: Studienverlag.

    Google Scholar 

  • Krainer, K., Hanfstingl, B., & Zehetmeier, S. (Eds.). (2009). Fragen zur Schule—Antworten aus Theorie und Praxis. Innsbruck, Austria: Studienverlag.

    Google Scholar 

  • Krainer, K., Senger, H., & Andreitz, I. (2013). Endbericht zum Projekt IMST 20102012. Innovationen Machen Schulen Top. Unpublished project report. Klagenfurt, Austria: AAU.

  • Kreis, I. (2009). Professionalität im Lehrberuf: Was ist das? Eine Annäherung aus Praxis und Theorie, Dissertation. Klagenfurt, Austria: AAU.

  • Leder, G., Pehkonen, E., & Törner, G. (2002). Beliefs: A hidden variable in mathematics education?. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lipowsky, F. (2004). Was macht Fortbildungen für Lehrkräfte erfolgreich? [What makes teacher professional development successful?]. Die Deutsche Schule, 96, 462–479.

    Google Scholar 

  • Loucks-Horsley, S., Stiles, K., & Hewson, P. (1996). Principles of effective professional development for mathematics and science education: a synthesis of standards. NISE Brief, 1(1), 1–6.

    Google Scholar 

  • Maaß, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching—a synthesis. ZDMThe International Journal on Mathematics Education, 45(6) (this issue). doi:10.1007/s11858-013-0528-0.

  • Maldonado, L. (2002). Effective professional development. Findings from research. http://apcentral.collegeboard.com/apc/public/repository/ap05_profdev_effectiv_41935.pdf (Accessed 16 Aug 2013).

  • Mayring, P. (2003). Qualitative Inhaltsanalyse. Weinheim, Germany: Beltz.

    Google Scholar 

  • Mullis, I. V. S., Martin, M. O., Beaton, A. E., Gonzalez, E. J., Kelly, D. J., & Smith, T. A. (1998). Mathematics and science achievement in the final year of secondary school: IEA’s third international mathematics and science study. Boston, MA: Center for the Study of Testing, Evaluation, and Educational Policy.

    Google Scholar 

  • Mundry, S. (2005). What experience has taught us about professional development. National Network of Eisenhower Regional Consortia and Clearinghouse.

  • Prenzel, M., & Ostermeier, C. (2006). Improving mathematics and science instruction: a program for the professional development of teachers. In F. Oser, F. Achtenhagen, & U. Renold (Eds.), Competence oriented teacher training. Old research demands and new pathways (pp. 79–96). Rotterdam, The Netherlands: Sense Publishers.

  • Prenzel, M., Schratz, M., & Messner, R. (2007). Evaluation von IMST3. Bericht an das Bundesministerium für Unterricht. Evaluation report.

  • Rauch, F., & Erlacher, W. (in preparation). Educational networks.

  • Rauch, F., & Kreis, I. (Eds.). (2007). Lernen durch fachbezogene Schulentwicklung. Schulen gestalten Schwerpunkte in den Naturwissenschaften, Mathematik und Informatik. Innsbruck, Austria: Studienverlag.

    Google Scholar 

  • Rogers, E. (2003). Diffusion of innovations (5th ed.). New York: Free Press.

    Google Scholar 

  • Scharizer, M. (2002). Anwendung von offenem Lernen bei der Erarbeitung neuer Stoffgebiete. Reflective paper. https://www.imst.ac.at/imst-wiki (Accessed 16 Aug 2013).

  • Schön, D. A. (1983). The reflective practitioner. How professionals think in action. New York: Basic Books.

    Google Scholar 

  • Schuster, A. (2008). Ich schreibe, also lerne ich: welche Anreize bewegen Lehrkräfte zum Schreiben über ihre Praxis?. Regensburg, Germany: Roderer.

    Google Scholar 

  • Sowder, J. (2007). The mathematical education and development of teachers. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 157–223). Greenwich, CT: NCTM.

    Google Scholar 

  • Stake, R. (1995). The art of case study research. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Stern, T. (2009). The role of formative assessment in enhancing independent learning and reflective teaching: some results of the Austrian IMST-Project. In K. Subramaniam & A. Mazumdar (Eds.), Proceedings of the epiSTEME-3-conference (pp. 209–214). Mumbai, India: HBCSE Tata Institute of Fundamental Research.

    Google Scholar 

  • Stern, T., & Streissler, A. (2006). Professionalitätsentwicklung von Lehrer/innen(teams) [Professional development of teacher teams]. Klagenfurt, Austria: University of Klagenfurt.

    Google Scholar 

  • Tatto, M. T., & Coupland, D. B. (2003). Teacher education and teachers’ beliefs: theoretical and measurement concerns. In J. Rath & A. C. McAninch (Eds.), Teacher beliefs and classroom performance: The impact of teacher education (pp. 123–181). Greenwich, CT: Information Age.

    Google Scholar 

  • von Glasersfeld, E. (Ed.). (1991). Radical constructivism in mathematics education. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Willke, H. (1999). Systemtheorie II: Interventionstheorie (3rd ed.). Stuttgart, Germany: Lucius & Lucius UTB.

    Google Scholar 

  • Wilson, M., & Cooney, T. J. (2002). Mathematics teacher change and development. The role of beliefs. In G. C. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 127–148). Dordrecht, Boston, London: Kluwer Academic Publishers.

  • Yin, R. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Zehetmeier, S. (2008). Zur Nachhaltigkeit von Lehrer/innenfortbildung. [Dissertation]. Klagenfurt, Austria: AAU.

  • Zehetmeier, S. (2010). Aktionsforschung in der Lehrerfortbildung: Was bleibt? In F.H. Müller, A. Eichenberger, M. Lüders, & J. Mayr (Eds.), Lehrerinnen und Lehrer lernen. Konzepte und Befunde der Lehrerfortbildung (pp. 197–211). Münster, Germany: Waxmann.

  • Zehetmeier, S., & Krainer, K. (2011). Ways of promoting the sustainability of mathematics teachers’ professional development. ZDM—The International Journal on Mathematics Education, 43(6/7), 875–887.

    Article  Google Scholar 

  • Zehetmeier, S., & Krainer, K. (2013). Researching the sustainable impact of professional development programmes on participating teachers’ beliefs. In Y. Li & J. N. Moschkovich (Eds.), Proficiency and beliefs in learning and teaching mathematics (pp. 139–155). Rotterdam, The Netherlands: Sense Publishers.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Krainer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krainer, K., Zehetmeier, S. Inquiry-based learning for students, teachers, researchers, and representatives of educational administration and policy: reflections on a nation-wide initiative fostering educational innovations. ZDM Mathematics Education 45, 875–886 (2013). https://doi.org/10.1007/s11858-013-0537-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-013-0537-z

Keywords

Navigation