Skip to main content
Log in

Markov random fields, Markov cocycles and the 3-colored chessboard

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The well-known Hammersley–Clifford Theorem states (under certain conditions) that any Markov random field is a Gibbs state for a nearest neighbor interaction. In this paper we study Markov random fields for which the proof of the Hammersley–Clifford Theorem does not apply. Following Petersen and Schmidt we utilize the formalism of cocycles for the homoclinic equivalence relation and introduce “Markov cocycles”, reparametrizations of Markov specifications. The main part of this paper exploits this to deduce the conclusion of the Hammersley–Clifford Theorem for a family of Markov random fields which are outside the theorem’s purview where the underlying graph is Z d . This family includes all Markov random fields whose support is the d-dimensional “3-colored chessboard”. On the other extreme, we construct a family of shift-invariant Markov random fields which are not given by any finite range shift-invariant interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Averincev, Description of Markov random fields by means of Gibbs conditional probabilities, Teor. Verojatnost. i Primenen. 17 (1972), 21–35.

    MathSciNet  MATH  Google Scholar 

  2. M. Boyle, R. Pavlov and M. Schraudner, Multidimensional sofic shifts without separation and their factors, Trans. Amer. Math. Soc. 362 (2010), 4617–4653.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. R. Brightwell and P. Winkler, Gibbs measures and dismantlable graphs, J. Combin. Theory Ser. B 78 (2000), 141–166.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Burton and J. E. Steif, Non–uniqueness of measures of maximal entropy for subshifts of finite type, Ergodic Theory Dynam. Systems 14 (1994), 213–235.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Chandgotia, Markov random fields and measures with nearest neighbour potentials, MSc Thesis, Mathematics Department, The University of British Columbia (2011). avaliable at: open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0072112.

    Google Scholar 

  6. N. Chandgotia, Generalisation of the Hammersley–Clifford theorem on bipartite graphs, Trans. Amer. Math. Soc., to appear. http://arxiv.org/abs/1406.1849.

  7. N. Chandgotia, G. Han, B. Marcus, T. Meyerovitch and R. Pavlov, One–dimensional Markov random fields, Markov chains and topological Markov fields, Proc. Amer. Math. Soc. 142 (2014), 227–242.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Dachian and B. S. Nahapetian, Description of random fields by means of one–point conditional distributions and some applications, Markov Process. Related Fields 7 (2001), 193–214.

    MathSciNet  MATH  Google Scholar 

  9. R. L. Dobrušin, Description of a random field by means of conditional probabilities and conditions for its regularity, Teor. Verojatnost. i Primenen 13 (1968), 201–229.

    MathSciNet  Google Scholar 

  10. N. Elkies, G. Kuperberg, M. Larsen and J. Propp, Alternating–sign matrices and domino tilings. I, J. Algebraic Combin. 1 (1992), 111–132.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Galvin, On homomorphisms from the Hamming cube to Z, Israel J. Math. 138 (2003), 189–213.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Geiger, C. Meek and B. Sturmfels, On the toric algebra of graphical models, Ann. Statist. 34 (2006), 1463–1492.

    Article  MathSciNet  MATH  Google Scholar 

  13. H.–O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, Vol. 9, Walter de Gruyter & Co., Berlin, 1988.

    Google Scholar 

  14. J. M. Hammersley and P. Clifford, Markov fields on finite graphs and lattices, 1968. avaliabel at: http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm–cliff.pdf.

    Google Scholar 

  15. O. E. Lanford, III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969), 194–215.

    Article  MathSciNet  Google Scholar 

  16. S. L. Lauritzen, Graphical Models, Vol. 17, Oxford Statistical Science Series, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.

    MATH  Google Scholar 

  17. T. Meyerovitch, Gibbs and equilibrium measures for some families of subshifts, Ergodic Theory Dynam. Systems 33 (2013), 934–953.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Moussouris, Gibbs and Markov random systems with constraints, J. Statist. Phys. 10 (1974), 11–33.

    Article  MathSciNet  Google Scholar 

  19. L. Onsager, Crystal statistics. I. A two–dimensional model with an order–disorder transition, Phys. Rev. (2) 65 (1944), 117–149.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Petersen and K. Schmidt, Symmetric Gibbs measures, Trans. Amer. Math. Soc. 349 (1997), 2775–2811.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Mathematics, No. 68, Cambridge University Press, London–New York, 1974

    Book  MATH  Google Scholar 

  22. A. Quas and A. A. Şahin, Entropy gaps and locally maximal entropy in Zd subshifts, Ergodic Theory Dynam. Systems 23 (2003), 1227–1245.

    Google Scholar 

  23. D. Ruelle, Thermodynamic Formalism, second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  24. K. Schmidt, The cohomology of higher–dimensional shifts of finite type, Pacific J. Math. 170 (1995), 237–269.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Schmidt, Invariant cocycles, random tilings and the super–K and strong Markov properties, Trans. Amer. Math. Soc. 349 (1997), 2813–2825.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Schmidt, Tilings, fundamental cocycles and fundamental groups of symbolic Zd_actions, Ergodic Theory Dynam. Systems 18 (1998), 1473–1525.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Sherman, Markov random fields and Gibbs random fields, Israel J. Math. 14 (1973), 92–103.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Spitzer, Markov random fields and Gibbs ensembles, Amer.Math. Monthly 78 (1971), 142–154.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer–Verlag, New York–Berlin, 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Chandgotia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandgotia, N., Meyerovitch, T. Markov random fields, Markov cocycles and the 3-colored chessboard. Isr. J. Math. 215, 909–964 (2016). https://doi.org/10.1007/s11856-016-1398-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1398-2

Navigation