Skip to main content
Log in

Discrete random walks on the group Sol

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The harmonic measure ν on the boundary of the group Sol associated to a discrete random walk of law µ was described by Kaimanovich. We investigate when it is absolutely continuous or singular with respect to Lebesgue measure. By ratio entropy over speed, we show that any countable non-abelian subgroup admits a finite first moment non-degenerate μ with singular harmonic measure ν. On the other hand, we prove that some random walks with finitely supported step distribution admit a regular harmonic measure. Finally, we construct some exceptional random walks with arbitrarily small speed but singular harmonic measures. The two later results are obtained by comparison with Bernoulli convolutions, using results of Erdős and Solomyak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Bárány, M. Pollicott and K. Simon, Stationary measures for projective transformations: The Blackwell and Furstenberg measures, Journal of Statistical Physics 148 (2012), 393–421.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Bendikov, L. Saloff-Coste, M. Salvatori and W. Woess, Brownian motion on treebolic space: escape to infinity, arXiv:1212.6151v2 [math.PR]_23 Feb 2013.

  3. D. Bertacchi, Random walks on Diestel-Leader graphs, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 71 (2001), 205–224.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bourgain, Finitely supported measures on SL2(R) which are absolutely continuous at infinity, in Geometric Aspect of Functional Analysis, Lecture Notes in Mathematics, Vol. 2050, Springer-Verlag, Berlin-Heidelberg, 2012, pp. 133–141.

    Chapter  Google Scholar 

  5. S. Brofferio, M. Salvatori and W. Woess, Brownian motion and harmonic functions on Sol(p, q), International Mathematics Research Notices 22 (2012), 5182–5218.

    MathSciNet  Google Scholar 

  6. W. Donoghue, Distributions and Fourier Transforms, Pure and Applied Mathematics, Vol. 32, Academic Press, Amsterdam, 1969.

    MATH  Google Scholar 

  7. P. Erdös, On a family of symmetric Bernoulli convolutions, American Journal of Mathematics 61 (1939), 974–976.

    Article  MathSciNet  Google Scholar 

  8. P. Erdös, On the smoothness properties of a family of Bernoulli convolutions, American Journal of Mathematics 62 (1940), 180–186.

    Article  MathSciNet  Google Scholar 

  9. A. Eskin, D. Fisher and K. Whyte, Quasi-isometries and rigidity of solvable groups, Pure and Applied Mathematics Quarterly 3 (2007), 927–947.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Eskin, D. Fisher and K. Whyte, Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs, Annals of Mathematics 176 (2012), 221–260.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Furstenberg, Random walks and discrete subgroups of Lie groups, in Advances in Probability and Related Topics, Vol. 1, Dekker, New York, 1971, pp. 1–63.

    Google Scholar 

  12. V. Gadre, Harmonic measures for distributions with finite support on the mapping class group are singular, Duke Mathematical Journal 163 (2014), 309–368.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.-P. Kahane, Sur la distribution de certaines séries aléatoires, in Colloques Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969), Mémoires de la Société Mathématique de France, Vol. 25, Société Mathématique de France, Paris, 1971, pp. 119–122.

    Google Scholar 

  14. V. A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, in Probability Measures on Groups, X (Oberwolfach, 1990), Plenum, New York, 1991, pp. 205–238.

  15. V. A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Annals of Mathematics 152 (2000), 659–692.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. A. Kaimanovich and V. Le Prince, Matrix random products with singular harmonic measure, Geometriae Dedicata 150 (2011) 257–279.

    Article  MATH  MathSciNet  Google Scholar 

  17. V. A. Kaimanovich and H. Masur, The Poisson boundary of the mapping class group, Inventiones mathematicae 125 (1996), 221–264.

    Article  MATH  MathSciNet  Google Scholar 

  18. V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Annals of Probability 11 (1983), 457–490.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. A. Kaimanovich and W. Woess, Boundary and entropy of space homogeneous Markov chains, Annals of Probability 30 (2002), 323–363.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Ledrappier, Une relation entre entropie, dimension et exposant pour certaines marches aléatoires, Comtes Rendus de l’Académie des Sciences. Série I. Mathématique 296 (1983), 369–372.

    MATH  MathSciNet  Google Scholar 

  21. F. Ledrappier, Some asymptotic properties of random walks on free groups, in Topics in Probability and Lie Groups: Boundary Theory, CRM Proceedings and Lecture Notes, Vol. 28, American Mathematical Society, Providence, RI, 2001, pp. 117–152.

    Google Scholar 

  22. A. Medina and P. Revoy, Lattices in symplectic Lie groups, Journal of Lie Theory 17 (2007), 27–39.

    MATH  MathSciNet  Google Scholar 

  23. E. Molnar and J. Szirmai, Classification of Sol lattices, Geometriae Dedicata 161 (2012), 251–275.

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions, in Fractal Geometry and Stochastics. II (Greifswald/Koserow, 1998), Progress in Probability, Vol. 46, Birkhäuser, Basel, 2000, pp. 39–65.

    Chapter  Google Scholar 

  25. Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Mathematical Research Letters 3 (1996), 231–239.

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Peres and B. Solomyak, Self-similar measures and intersections of Cantor sets, Transactions of the American Mathematical Society 350 (1998), 40650–4087.

    Article  MathSciNet  Google Scholar 

  27. Y. B. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997.

    Book  Google Scholar 

  28. P. Shmerkin, On the exceptional set for absolute continuity of Bernoulli convolutions, Geometric and Functional Analysis 24 (2014), 946–958.

    Article  MATH  MathSciNet  Google Scholar 

  29. B. Solomyak, On the random series Σ ± λ n (an Erdős problem), Annals of Mathematics 142 (1995), 611–625.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Troyanov, L’horizon de SOL, Expositiones Mathematicae 16 (1998), 441–479.

    MATH  MathSciNet  Google Scholar 

  31. A. Wintner, On convergent Poisson convolutions, American Journal of Mathematics 57 (1935), 827–838.

    Article  MathSciNet  Google Scholar 

  32. W. Woess, What is a horocyclic product, and how is it related to lamplighters?, Internationale Matematische Nachrichten 224 (2013), 1–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Brieussel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brieussel, J., Tanaka, R. Discrete random walks on the group Sol. Isr. J. Math. 208, 291–321 (2015). https://doi.org/10.1007/s11856-015-1200-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1200-x

Keywords

Navigation