Skip to main content
Log in

Noetherian type in topological products

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The cardinal invariant Noetherian type Nt(X) of a topological space X was introduced by Peregudov in 1997 to deal with base properties that were studied by the Russian School as early as 1976. We study its behavior in products and box-products of topological spaces.

We prove in Section 2:

  1. (1)

    There are spaces X and Y such that Nt(X×Y)< min{Nt(X), Nt(Y)}.

  2. (2)

    In several classes of compact spaces, the Noetherian type is preserved by the operations of forming a square and of passing to a dense subspace.

The Noetherian type of the Cantor Cube of weight \({\aleph _\omega }\) with the countable box topology, \({({2^{{\aleph _\omega }}})_\delta }\), is shown in Section 3 to be closely related to the combinatorics of covering collections of countable subsets of \({\aleph _\omega }\). We discuss the influence of principles like \({\square _{{\aleph _\omega }}}\) and Chang’s conjecture for \({\aleph _\omega }\) on this number and prove that it is not decidable in ZFC (relative to the consistency of ZFC with large cardinal axioms).

Within PCF theory we establish the existence of an (ℵ4, ℵ1)-sparse covering family of countable subsets of \({\aleph _\omega }\) (Theorem 3.20). From this follows an absolute upper bound of ℵ4 on the Noetherian type of \({({2^{{\aleph _\omega }}})_\delta }\). The proof uses a method that was introduced by Shelah in 1993 [33].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Abraham and M. Magidor, Cardinal arithmetic, in Handbook of Set Theory, Springer, Dordrecht, 2010, pp. 1149–1227.

    Chapter  Google Scholar 

  2. A. V. Arhangel’skiĭ, On the metrization of topological spaces, Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 8 (1960), 589–595.

    Google Scholar 

  3. A. V. Arhangel’skiĭ (Ed.), General Topology III: Paracompactness, Function Spaces, Descriptive Theory, Encyclopedia of the Mathematical Sciences, Vol. 3, Springer, Berlin, 1995.

    MATH  Google Scholar 

  4. B. Bailey, δ-OIF spaces, Questions and Answers in General Topology 24 (2006), 79–84.

    MathSciNet  MATH  Google Scholar 

  5. Z. Balogh and H. Bennett, Total paracompactness of real GO-spaces, Proceedings of the American Mathematical Society 101 (1987), 753–760.

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Balogh, H. Bennett, D. Burke, D. Gruenhage, D. Lutzer and J. Mashburn, OIF spaces, Questions and Answers in General Topology 18 (2000), 129–141.

    MathSciNet  MATH  Google Scholar 

  7. H. Bennett and D. Lutzer, Ordered spaces with special bases, Fundamenta Mathematicae 158 (1998), 289–299.

    MathSciNet  MATH  Google Scholar 

  8. J. Cummings, Notes on singular cardinal combinatorics, Notre Dame Journal of Formal Logic 46 (2005), 251–282.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Cummings, M. Foreman and M. Magidor, Squares, scales, and stationary reflection, Journal of Mathematical Logic 1 (2001), 35–98.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. W. Curtis, Total and absolute paracompactness, Fundamenta Mathematicae 77 (1973), 277–283.

    MathSciNet  MATH  Google Scholar 

  11. A. Dow, An introduction to applications of elementary submodels to topology, Topology Proceedings 13 (1988), 17–72.

    MathSciNet  MATH  Google Scholar 

  12. M. Foreman and M. Magidor, A very weak square principle, Journal of Symbolic Logic 62 (1997), 175–196.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Foreman, M. Magidor and S. Shelah, Martin’s maximum, saturated ideals and nonregular ultrafilters. Part 1, Annals of Mathematics 127 (1988), 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Geschke and S. Shelah, Some notes concerning the homogeneity of boolean algebras and boolean spaces, Topology and its Applications 133 (2003), 241–253.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Gitik, Prikry-type forcings, in Handbook of Set Theory, Springer, Dordrecht, 2010, pp. 1351–1447.

    Chapter  Google Scholar 

  16. M. Gitik and M. Magidor, The singular cardinal hypothesis revisited, in Set Theory of the Continuum (Berkeley, CA, 1989), Mathematical Sciences Research Institutte Publications, Vol. 26, Springer, New York, 1992, pp. 243–279.

    Chapter  Google Scholar 

  17. R. W. Heath, Screenability, pointwise paracompactness, and metrization of Moore spaces, Canadian Journal of Mathematics 16 (1964), 763–770.

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Juhász, Cardinal Function in Topology — Ten Years Later, Mathematical Centre Tracts, Vol. 123, Mathematisch Centrum, Amsterdam, 1980.

    Google Scholar 

  19. I. Juhász, On two problems of A. V. Arhangel’skiĭ, General Topology and its Applications 2 (1972), 151–156.

    Article  MATH  Google Scholar 

  20. M. Kojman, Exact upper bounds and their uses in set theory, Annals of Pure and Applied Logic 92 (1998), 267–282.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Kojman, A short proof of the PCF theorem, preprint.

  22. A. Lelek, Some cover properties of spaces, Fundamenta Mathematicae 64 (1969), 209–218.

    MathSciNet  MATH  Google Scholar 

  23. J. P. Levinski, M. Magidor and S. Shelah, Chang’s conjecture for \({\aleph _\omega }\), Israel Journal of Mathematics 69 (1990), 161–172.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Magidor and S. Shelah, When does almost free imply free? (For groups, transversals, etc.), Journal of the American Mathematical Society 7 (1994), 769–830.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. I. Malykhin, On Noetherian spaces, American Mathematical Society Translations 134 (1987), 83–91.

    MATH  Google Scholar 

  26. D. Milovich, Noetherian types of homogeneous compacta and dyadic compacta, Topology and its Applications 156 (2008), 443–464.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Milovich, Splitting families and the Noetherian type of βω \ ω, Journal of Symbolic Logic 73 (2008), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. A. Peregudov, On the Noetherian type of topological spaces, Commentationes Mathematicae Universitatis Carolinae 38 (1997), 581–586.

    MathSciNet  MATH  Google Scholar 

  29. S. A. Peregudov and B. É. Šhapirovskiĭ, A class of compact spaces, Soviet Math. Dokl. 17 (1976), no. 5, 1296–1300.

    MATH  Google Scholar 

  30. A. Sharon and M. Viale, Some consequences of reflection on the approachability ideal, Transactions of the American Mathematical Society 362 (2010), 4201–4212.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Shelah, Cardinal Arithmetic, Oxford University Press, 1994.

  32. S. Shelah, More on countably compact, locally countable spaces, Israel Journal of Mathematics 62 (1988), 302–310.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Shelah, Advances in cardinal arithmetic, in Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), NATO Advanced Science Institutes Series C: Mathematical and Physical Scirnces, Vol. 411, Kluwer Academic, Dordrecht, 1993, 355–383.

    Chapter  Google Scholar 

  34. S. Shelah, Non-reflection of the bad set for \({\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}\to {I} _\theta }[\lambda ]\) and pcf, Acta Mathematica Hungarica, in press. Preprint sh:1008 in Shelah’s archive.

  35. L. Soukup, A note on Noetherian type of spaces, arXiv:1003.3189.

  36. R. Telgárksy, C-scattered and paracompact spaces, Fundamenta Mathematicae 73 (1971/1972), 59–74.

    MathSciNet  Google Scholar 

  37. S. Todorcevic, Directed sets and cofinal types, Transactions of the American Mathematical Society 290 (1985), 711–723.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menachem Kojman.

Additional information

The first author was supported by a fellowship from the Institute for Advanced Study, Princeton, NJ, while working on this research.

The third author was partially supported by the Center for Advanced Studies in Mathematics at Ben Gurion University and by an INdAM-Cofund Outgoing fellowship. He wishes to thank the Institute for Advanced Study, Princeton, NJ and the Fields Institute of the University of Toronto for their hospitality in June 2011 and since March 2012, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojman, M., Milovich, D. & Spadaro, S. Noetherian type in topological products. Isr. J. Math. 202, 195–225 (2014). https://doi.org/10.1007/s11856-014-1101-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-014-1101-4

Keywords

Navigation