Skip to main content
Log in

Mean dimension and an embedding problem: An example

Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

For any positive integer D, we construct a minimal dynamical system with mean dimension equal to D/2 that cannot be embedded into (([0, 1]D), shift).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, Vol. 153, North-Holland, Amsterdam, 1988.

    MATH  Google Scholar 

  2. M. Coornaert and F. Krieger, Mean topological dimension for actions of discrete amenable groups, Discrete and Continuous Dynamical Systems 13 (2005), 779–793.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I, Mathematical Physics, Analysis and Geometry 2 (1999), 323–415.

    Article  MATH  MathSciNet  Google Scholar 

  4. Y. Gutman, Embeddingk-actions in cubical shifts andk-symbolic extensions, Ergodic Theory and Dynamical Systems 31 (2011), 383–403.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, Vol. 4, Princeton University Press, Princeton, NJ, 1941.

    Google Scholar 

  6. A. Jaworski, Ph.D. Thesis, University of Maryland, 1974.

  7. E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Institut des Hautes Études Scientifiques. Publications Mathématiques 89 (1999), 227–262.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel Journal of Mathematics 115 (2000), 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Matoušek, Using the Borsuk-Ulam Theorem, Lectures on Topological Methods in Combinatorics and Geometry, Corrected 2nd printing, Springer-Verlag, Berlin-Heidelberg, 2008.

    Book  MATH  Google Scholar 

  10. A. B. Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, in Surveys in Contemporary Mathematics, London Mathematical Society Lecture Note Series, Vol. 347, Cambridge University Press, Cambridge, 2008, pp. 248–342.

    Google Scholar 

  11. M. Skopenkov, Embedding products of graphs into Euclidean spaces, Fundamenta Mathematicae 179 (2003), 191–198.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elon Lindenstrauss.

Additional information

Elon Lindenstrauss acknowledges the support of the ISF and ERC.

Masaki Tsukamoto was supported by Grant-in-Aid for Young Scientists (B) (21740048).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindenstrauss, E., Tsukamoto, M. Mean dimension and an embedding problem: An example. Isr. J. Math. 199, 573–584 (2014). https://doi.org/10.1007/s11856-013-0040-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-013-0040-9

Keywords

Navigation