Skip to main content
Log in

First and higher order uniform dual ergodic theorems for dynamical systems with infinite measure

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We generalize the proof of Karamata’s Theorem by the method of approximation by polynomials to the operator case. As a consequence, we offer a simple proof of uniform dual ergodicity for a very large class of dynamical systems with infinite measure, and we obtain bounds on the convergence rate.

In many cases of interest, including the Pomeau-Manneville family of intermittency maps, the estimates obtained through real Tauberian remainder theory are very weak. Building on the techniques of complex Tauberian remainder theory, we develop a method that provides second (and higher) order asymptotics. In the process, we derive a higher order Tauberian theorem for scalar power series which, to our knowledge, has not previously been covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Aaronson, Random f-expansions, The Annals of Probability 14 (1986), 1037–1057.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs 50, American Mathematical Society, Providenece, RI, 1997.

    MATH  Google Scholar 

  3. J. Aaronson and M. Denker, Upper bounds for ergodic sums of infinite measure preserving transformations, Transactions of the American Mathematical Society 319 (1990), 101–138.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stochastics and Dynamics 1 (2001) 193–237.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Aaronson, M. Denker and A. M. Fisher, Second order ergodic theorems for ergodic transformations of infinite measure spaces, Proceedings of the American Mathematical Society 114 (1992), 115–127.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Transactions of the American Mathematical Society 337 (1993), 495–548.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Aljančić, R. Bojanić and M. Tomić, Slowly varying functions with remainder and their applications in analysis, Serbian Acad. Sci. Acts Monographs 467, Beograd, 1974.

  8. N. H. Bingham, Limit theorems for occupation times of Markoff processes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 17 (1971), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, in Encyclopedia of Mathematics and its Applications 27, Cambridge University Press, Cambridge, 1987.

    Book  MATH  Google Scholar 

  10. D. A. Darling and M. Kac, On occupation times for Markoff processes, Transactions of the American Mathematical Society 84 (1957), 444–458.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. B. Erickson, Strong renewal theorems with infinite mean, Transactions of the American Mathematical Society 151 (1970), 263–291.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Feller, An Introduction to Probability Theory and its Applications, II, Wiley, New York, 1966.

    Google Scholar 

  13. P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM Journal on Discrete Mathematics 3 (1990), 216–240.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Freud, Restglied eines Tauberschen Satzes. I, Acta Mathematica Hungarica 2 (1951), 299–308.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Garsia and J. Lamperti, A discrete renewal theorem with infinite mean, Commentarii Mathematici Helvetici 37 (1962/1963), 221–234.

    Article  MathSciNet  Google Scholar 

  16. J. Geluk, π regular variation, Proceedings of the American Mathematical Society 82 (1981), 565–570.

    MathSciNet  MATH  Google Scholar 

  17. J. Geluk and L. de Haan, On functions with small differences, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 84 (1981), 187–194.

    Article  Google Scholar 

  18. S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel Journal of Mathematics 139 (2004), 29–65.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Gouëzel, Berry-Esseen theorem and local limit theorem for non uniformly expanding maps, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire 41 (2005), 997–1024.

    Article  MATH  Google Scholar 

  20. S. Gouëzel, Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps, Israel Journal of Mathematics 180 (2010), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Gouëzel, Correlation asymptotics from large deviations in dynamical systems with infinite measure, Colloquium Mathematicum 125 (2011), 193–212.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. de Haan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Centre Tract 32, Amsterdam, 1970.

  23. L. de Haan, An Abel Tauber theorem for Laplace transform, Journal of the London Mathematical Society 13 (1976), 537–542.

    Article  MATH  Google Scholar 

  24. H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergodic Theory and Dynamical Systems 24 (2004), 495–524.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Ingham, On Tauberian theorems, Proceedings of the London Mathematical Society 14A (1965), 157–173.

    Article  MathSciNet  Google Scholar 

  26. G. Jordan, Regularly varying functions and convolutions with real kernels, Transactions of the American Mathematical Society 194 (1974), 177–194.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Karamata, Über die Hardy-Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes, Mathematische Zeitschrift 32 (1930), 319–320.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Karamata, Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjessche Transformation betreffen, Journal für die Reine und Angewandte Mathematik 164 (1931), 27–39.

    Google Scholar 

  29. J. Korevaar, A very general form of Littlewood’s theorem, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 16 (1954), 36–45.

    MathSciNet  Google Scholar 

  30. J. Korevaar, Another numerical Tauberian theorem for power series, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 16 (1954), 45–56.

    Google Scholar 

  31. J. Korevaar, Tauberian Theory. A Century of Developments, Springer-Verlag, Berlin, Heidelberg, 2004.

    Book  MATH  Google Scholar 

  32. J. Lamperti, An invariance principle in renewal theory, The Annals of Mathematical Statistics 33 (1962), 685–696.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory and Dynamical Systems 19 (1999), 671–685.

    Article  MathSciNet  MATH  Google Scholar 

  34. I. Melbourne and D. Terhesiu, Operator renewal theory and mixing rates for dynamical systems with infinite measure, Inventiones Mathematicae 189 (2012), 61–110.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Murray, Ulam’s method for some non-uniformly expanding maps, Discrete and Continuous Dynamical Systems 26 (2010), 1007–1018.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Omey, Tauberian theorems with remainder, Journal of the London Mathematical Society 32 (1985), 116–132.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Communications in Mathematical Physics 74 (1980), 189–197.

    Article  MathSciNet  Google Scholar 

  38. O. M. Sarig, Subexponential decay of correlations, Inventiones Mathematicae 150 (2002), 629–653.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. A. Subhankulov, Tauberian theorems with remainder term, Matematicheskiı Sbornik 52(94) (1960) 823–846; American Mathematical Society Translations 26 (1963), 311–338.

    MathSciNet  Google Scholar 

  40. M. Thaler, Transformations on [0,1] with infinite invariant measures, Israel Journal of Mathematics 46 (1983), 67–96.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Thaler, A limit theorem for the Perron-Frobenius operator of transformations on [0, 1] with indifferent fixed points, Israel Journal of Mathematics 91 (1995), 111–127.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Thaler, A limit theorem for sojourns near indifferent fixed points of one-dimensional maps, Ergodic Theory and Dynamical Systems 22 (2002), 1289–1312.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Thaler and R. Zweimüller, Distributional limit theorems in infinite ergodic theory, Probability Theory and Related Fields 135 (2006), 15–52.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Zweimüller, Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points, Nonlinearity 11 (1998), 1263–1276.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergodic Theory and Dynamical Systems 20 (2000), 1519–1549.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Melbourne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melbourne, I., Terhesiu, D. First and higher order uniform dual ergodic theorems for dynamical systems with infinite measure. Isr. J. Math. 194, 793–830 (2013). https://doi.org/10.1007/s11856-012-0154-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0154-5

Keywords

Navigation