Skip to main content
Log in

Hilbert cubes in progression-free sets and in the set of squares

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We present a new method to give upper bounds on the dimension of Hilbert cubes in certain sets. As a special case we improve Hegyvári and Sárközy’s upper bound O((logN)1/3) for the maximal dimension of a Hilbert cube in the set of squares in [1,N] to O((log logN)2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. Brown, P. Erdős and A. R. Freedman, Quasi-progressions and descending waves, Journal of Combinatorial Theory. Series A 53 (1990), 81–95.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Cilleruelo and A. Granville, Lattice points on circles, squares in arithmetic progressions, and sumsets of squares, in Additive Combinatorics, CRM Proceedings & Lecture Notes, American Mathematical Society, Providence, RI, Vol. 43, 2007, pp. 241–262.

    Google Scholar 

  3. P. Csikvári, Subset sums avoiding quadratic nonresidues, Acta Arithmetica 135 (2008), 91–98.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Darmon and L. Merel, Winding quotients and some variants of Fermat’s last theorem, Journal für die Reine und Angewandte Mathematik 490 (1997), 81–100.

    MathSciNet  MATH  Google Scholar 

  5. L. E. Dickson, History of the Theory of Numbers, Vol. II: Diophantine Analysis, reprint, Chelsea Publishing Co., New York, 1966.

    Google Scholar 

  6. C. Elsholtz, Hilbert cubes in the set of primes, talk at the workshop “Elementary and Analytic Number Theory”, Mathematisches Forschungsinstitut Oberwolfach, Report no. 12/2003. http://old.mfo.de/programme/schedule/2003/11/Report12_2003.pdf

  7. W. T. Gowers, A new proof of Szemerédi’s theorem, Geometric and Functional Analysis 11 (2001), 465–588.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. L. Graham, B. Rothschild and J. Spencer, Ramsey Theory, Wiley Interscience, New York, 1980.

    MATH  Google Scholar 

  9. K. Gyarmati, On a problem of Diophantus, Acta Arithmetica 97 (2001), 53–65.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Hegyvári and A. Sárközy, On Hilbert cubes in certain sets, The Ramanujan Journal 3 (1999), 303–314.

    Article  MATH  Google Scholar 

  11. D. Hilbert, Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten, Journal für die Reine und Angewandte Mathematik 110 (1892), 104–129.

    Google Scholar 

  12. J. Solymosi, Elementary Additive Combinatorics, in Additive Combinatorics, CRMProceedings & Lecture Notes, American Mathematical Society, Providence, RI, Vol. 43, 2007, pp. 29–38.

    Google Scholar 

  13. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Mathematica Academiae Scientiarum Hungaricae 20 (1969), 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Wood, Subset sum “cubes” and the complexity of primality testing, Theoretical Computer Science 322 (2004), 203–219.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Dietmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietmann, R., Elsholtz, C. Hilbert cubes in progression-free sets and in the set of squares. Isr. J. Math. 192, 59–66 (2012). https://doi.org/10.1007/s11856-012-0047-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0047-7

Keywords

Navigation