Skip to main content
Log in

On the packing dimension of the Julia set and the escaping set of an entire function

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let f be a transcendental entire function. We give conditions which imply that the Julia set and the escaping set of f have packing dimension 2. For example, this holds if there exists a positive constant c less than 1 such that the minimum modulus L(r, f) and the maximum modulus M(r, f) satisfy log L(r, f) ≤ c logM(r, f) for large r. The conditions are also satisfied if logM(2r, f) ≥ d logM(r, f) for some constant d greater than 1 and all large r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Anderson and V. Ya. Eiderman, Cauchy transforms of point masses: the logarithmic derivative of polynomials, Annals of Mathematics 163 (2006), 1057–1076.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. N. Baker, Wandering domains in the iteration of entire functions, Proceedings of the London Mathematical Society 49 (1984), 563–576.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Barański, Hausdorff dimension of hairs and ends for entire maps of finite order, Mathematical Proceedings of the Cambridge Philosophical Society 145 (2008), 719–737.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Barański, B. Karpiñska and A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, International Mathematics Research Notices 4 (2009), 615–624.

    Google Scholar 

  5. W. Bergweiler, Iteration of meromorphic functions, Bulletin of the American Mathematical Society 29 (1993), 151–188.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Bergweiler, A new proof of the Ahlfors five islands theorem, Journal d’Analyse Mathématique 76 (1998), 337–347.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Revista Matemática Iberoamericana 11 (1995), 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Bergweiler and B. Karpińska, On the Hausdorff dimension of the Julia set of a regularly growing entire function, Mathematical Proceedings of the Cambridge Philosophical Society 148 (2010), 531–551.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Bergweiler, B. Karpińska and G. M. Stallard, The growth rate of an entire function and the Hausdorff dimension of its Julia set, Journal of the London Mathematical Society 80 (2009), 680–698.

    Article  MATH  Google Scholar 

  10. W. Bergweiler, P. J. Rippon and G. M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proceedings of the London Mathematical Society 97 (2008), 368–400.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Bergweiler, P. J. Rippon and G. M. Stallard, Multiply connected wandering domains of entire functions, preprint, arXiv 1109:1794.

  12. W. Cherry and Z. Ye, Nevanlinna’s Theory of Value Distribution. The Second Main Theorem and its Error Terms, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  13. I. E. Chyzhykov, An addition to the cos πρ-theorem for subharmonic and entire functions of zero lower order, Proceedings of the American Mathematical Society 130 (2002), 517–528.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. E. Eremenko, On the iteration of entire functions, in Dynamical Systems and Ergodic Theory, Banach Center Publications, Vol. 23, Polish Scientific Publishers, Warsaw, 1989, pp. 339–345.

    Google Scholar 

  15. A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Université de Grenoble. Annales de l’Institut Fourier 42 (1992), 989–1020.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990.

    MATH  Google Scholar 

  17. P. C. Fenton, The infimum of small subharmonic functions, Proceedings of the American Mathematical Society 78 (1980), 43–47.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs, Vol. 236, American Mathematical Society, Providence, RI, 2008.

    MATH  Google Scholar 

  19. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

    MATH  Google Scholar 

  20. W. K. Hayman, Subharmonic Functions, Vol. 2, London Mathematical Society Monographs, Vol. 20, Academic Press, London, 1989.

    Google Scholar 

  21. A. Hinkkanen, Julia sets of polynomials are uniformly perfect, Bulletin of the London Mathematical Society 26 (1994), 153–159.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. K. Langley, On the multiple points of certain meromorphic functions, Proceedings of the American Mathematical Society 123 (1995), 1787–1795.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. J. Macintyre and W. H. J. Fuchs, Inequalities for the logarithmic derivatives of a polynomial, Journal of the London Mathematical Society 15 (1940), 162–168.

    Article  MathSciNet  Google Scholar 

  24. C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Transactions of the American Mathematical Society 300 (1987), 329–342.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. T. McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies, Vol. 135, Princeton University Press, Princeton, NJ, 1994.

    Google Scholar 

  26. T. Ransford, Potential Theory in the Complex Plane, London Mathematical Society Student Texts, Vol. 28, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  27. L. Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proceedings of the American Mathematical Society 137 (2009), 1411–1420.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Rempe and G. M. Stallard, Hausdorff dimensions of escaping sets of transcendental entire functions, Proceedings of the American Mathematical Society 138 (2010), 1657–1665.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. J. Rippon and G. M. Stallard, Escaping points of meromorphic functions with a finite number of poles, Journal d’Analyse Mathématique 96 (2005), 225–245.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. J. Rippon and G. M. Stallard, Dimensions of Julia sets of meromorphic functions, Journal of the London Mathematical Society 71 (2005), 669–683.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. J. Rippon and G. M. Stallard, Dimensions of Julia sets of meromorphic functions with finitely many poles, Ergodic Theory and Dynamical Systems 26 (2006), 525–538

    Article  MathSciNet  MATH  Google Scholar 

  32. P. J. Rippon and G. M. Stallard, Slow escaping points of meromorphic functions, Transactions of the American Mathematical Society 363 (2011) 4171–4201.

    Article  MathSciNet  MATH  Google Scholar 

  33. P. J. Rippon and G. M. Stallard, Fast escaping points of entire functions, Proceedings of the London Mathematical Society, to appear

  34. H. Schubert, Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung, Dissertation, University of Kiel, 2007.

  35. G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions, Ergodic Theory and Dynamical Systems 11 (1991), 769–777.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. M. Stallard, Dimensions of Julia sets of transcendental meromorphic functions, in Transcendental Dynamics and Complex Analysis, London Mathematical Society Lecture Note Series, Vol. 348, Cambridge University Press, Cambridge, 2008, pp. 425–446.

    MATH  Google Scholar 

  37. J. H. Zheng, On multiply-connected Fatou components in iteration of meromorphic functions, Journal of Mathematical Analysis and Applications 313 (2006), 24–37.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Bergweiler.

Additional information

Supported by a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, Grant No. 2010 TIJ10. Also supported by the Deutsche Forschungsgemeinschaft, Grant Be 1508/7-1, the EU Research Training Network CODY and the ESF Networking Programme HCAA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergweiler, W. On the packing dimension of the Julia set and the escaping set of an entire function. Isr. J. Math. 192, 449–472 (2012). https://doi.org/10.1007/s11856-012-0033-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0033-0

Keywords

Navigation