Skip to main content
Log in

Generalized involution models for wreath products

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that if a finite group H has a generalized involution model, as defined by Bump and Ginzburg, then the wreath product HS n also has a generalized involution model. This extends the work of Baddeley concerning involution models for wreath products. As an application, we construct a Gel’fand model for wreath products of the form AS n with A abelian, and give an alternate proof of a recent result due to Adin, Postnikov and Roichman describing a particularly elegant Gel’fand model for the wreath product r S n . We conclude by discussing some notable properties of this representation and its decomposition into irreducible constituents, proving a conjecture of Adin, Postnikov and Roichman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adin, A. Postnikov and Y. Roichman, Combinatorial Gel’fand models, Journal of Algebra 320 (2008), 1311–1325.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Adin, A. Postnikov and Y. Roichman, A Gel’fand model for wreath products, Israel Journal of Mathematics 179 (2010), 381–402.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. L. Aguado and J. O. Araujo, A Gel’fand model for the symmetric group, Communications in Algebra 29 (2001), 1841–1851.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. O. Araujo, A Gel’fand model for a Weyl group of type Bn, Beiträge zur Algebra und Geometrie 44 (2003), 359–373.

    MathSciNet  MATH  Google Scholar 

  5. J. O. Araujo and J. J. Bigeón, A Gel’fand model for a Weyl group of type Dn and the branching rules D ↪ B, Journal of Algebra 294 (2005), 97–116.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. W. Baddeley, Models and involution models for wreath products and certain Weyl groups, Journal of the London Mathematical Society. Second Series 44 (1991), 55–74.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. W. Baddeley, Some Multiplicity-Free Characters of Finite Groups, Ph.D. Thesis, Cambridge, 1991.

  8. D. Bump and D. Ginzburg, Generalized Frobenius-Schur numbers, Journal of Algebra 278 (2004), 294–313.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Caselli and R. Fulci, Refined Gel’fand models for wreath products, European Journal of Combinatorics 32 (2011), 198–216.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. F. J. Inglis, R. W. Richardson and J. Saxl, An explicit model for the complex representations of Sn, Archiv der Mathematik 54 (1990), 258–259.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Kawanaka and H. Matsuyama, A twisted version of the Frobenius-Schur indicator and multiplicity-free permutation representation, Hokkaido Mathematical Journal 19 (1990), 495–508.

    MathSciNet  MATH  Google Scholar 

  12. A. A. Klyachko, Models for complex representations of the groups GL(n, q) and Weyl groups, Doklady Akademii Nauk SSSR 261 (1981), 275–278 (in Russian).

    MathSciNet  Google Scholar 

  13. A. A. Klyachko, Models for complex representations of the groups GL(n, q), Matematicheskii Sbornik 120(162) (1983), 371–386 (in Russian).

    MathSciNet  Google Scholar 

  14. V. Kodiyalam and D. N. Verma, A natural representation model for symmetric groups, preprint, available online at arXiv:math/0402216v1 (2004).

  15. E. Marberg, Automorphisms and generalized involution models of finite complex reflection groups, Journal of Algebra 334 (2011), 295–320.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. D. Ryan, Representations of Weyl groups of type B induced from centralisers of involutions, Bulletin of the Australian Mathematical Society 44 (1991), 337–344.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. P. Schützenberger, La correspondance de Robinson, in Combinatoire et reprèsentation du groupe symétrique, Lecture Notes in Mathematics, Vol. 579, Springer-Verlag, New York-Berlin, 1977, pp. 59–113.

    Chapter  Google Scholar 

  18. W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Mathematics Seminar (Berlin) 1 (1932), 1–32.

    Google Scholar 

  19. R. Stanley, Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.

    Book  MATH  Google Scholar 

  20. D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux, Journal of Combinatorial Theory, Series A 40 (1985), 211–247.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. R. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific Journal of Mathematics 140 (1989), 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. R. Vinroot, Involution models of finite Coxeter groups, Journal of Group Theory 11 (2008), 333–340.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Marberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marberg, E. Generalized involution models for wreath products. Isr. J. Math. 192, 157–195 (2012). https://doi.org/10.1007/s11856-012-0021-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0021-4

Keywords

Navigation