Skip to main content
Log in

Rates of decay in the classical Katznelson-Tzafriri theorem

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The Katznelson-Tzafriri Theorem states that, given a power-bounded operator T, ǁT n(IT)ǁ → 0 as n → ∞ if and only if the spectrum σ(T) of T intersects the unit circle T in at most the point 1. This paper investigates the rate at which decay takes place when σ(T) ∩ T = {1}. The results obtained lead, in particular, to both upper and lower bounds on this rate of decay in terms of the growth of the resolvent operator R(e, T) as θ → 0. In the special case of polynomial resolvent growth, these bounds are then shown to be optimal for general Banach spaces but not in the Hilbert space case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63–79.

    MathSciNet  MATH  Google Scholar 

  2. W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, second edition, Birkhäuser/Springer Basel AG, Basel, 2011.

    Book  MATH  Google Scholar 

  3. C. Arhancet and C. Le Merdy, Dilation of Ritt operators on Lp-spaces, Israel J. Math. 201 (2014), 373–414.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Badea and Y. I. Lyubich, Geometric, spectral and asymptotic properties of averaged products of projections in Banach spaces, Studia Math. 201 (2010), 21–35.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bátkai, K.-J. Engel, J. Prüss, and R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr. 279 (2006), 1425–1440.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. J. K. Batty, Asymptotic behaviour of semigroups of operators, in Functional Analysis and Operator Theory, Polish Acad. Sci., Warsaw, 1994, pp. 35–52.

    MATH  Google Scholar 

  7. C. J. K. Batty, R. Chill, and Y. Tomilov, Fine scales of decay of operator semigroups, J. Eur. Math. Soc. (JEMS) 18 (2016), 853–924.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semigroups on Banach spaces, J. Evol. Equ. 8 (2008), 765–780.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Blunck, Analyticity and discrete maximal regularity on Lp-spaces, J. Funct. Anal. 183 (2001), 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2001), 157–176.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347 (2010), 455–478.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Chill and Y. Tomilov, Stability of operator semigroups: ideas and results, in Perspectives in Operator Theory, Polish Acad. Sci., Warsaw, 2007, pp. 71–109.

    Chapter  Google Scholar 

  13. P. Diaconis, G. Lebeau, and L. Michel, Geometric analysis for the Metropolis algorithm on Lipschitz domains, Invent. Math. 185 (2011), 239–281.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Dungey, Time regularity for random walks on locally compact groups, Probab. Theory Related Fields 137 (2007), 429–442.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Dungey, On time regularity and related conditions for power-bounded operators, Proc. Lond. Math. Soc. (3) 97 (2008), 97–116.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Dungey, Time regularity for aperiodic or irreducible random walks on groups, Hokkaido Math. J. 37 (2008), 19–40.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Dungey, Subordinated discrete semigroups of operators, Trans. Amer. Math. Soc. 363 (2011), 1721–1741.

    Article  MathSciNet  MATH  Google Scholar 

  18. O. El-Fallah and T. Ransford, Extremal growth and powers of operators satisfying resolvent conditions of Kreiss-Ritt type, J. Funct. Anal. 196 (2002), 135–154, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.

    Book  MATH  Google Scholar 

  20. A. M. Gomilko, Cayley transform of the generator of a uniformly bounded C0-semigroup of operators Ukrainian Math. J. 56 (2004), 1212–1226.

    Article  MathSciNet  Google Scholar 

  21. G. Grimmett and D. Welsh, Probability: An Introduction, Oxford University Press, 1986.

    MATH  Google Scholar 

  22. M. Haase, A functional calculus description of real interpolation spaces for sectorial operators, Studia Math. 171 (2005), 177–195.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Haase and Y. Tomilov, Domain characterizations of certain functions of power-bounded operators, Studia Math. 196 (2010), 265–288.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Kalton, S. Montgomery-Smith, K. Olieszkiewicz, and Y. Tomilov, Power-bounded operators and related norm estimates, J. Lond. Math. Soc. (2) 70 (2004), 463–478.

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313–328.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Koosis, The Logarithmic Integral, Volume 1, Cambridge University Press, Cambridge, 1988.

    Book  MATH  Google Scholar 

  27. F. Lancien and C. Le Merdy, On functional calculus properties of Ritt operators, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), 1239–1250.

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Latushkin and R. Shvydkoy, Hyperbolicity of semigroups and Fourier multipliers, in Systems, Approximations, Singular Integral Operators, and Related Topics, Birkhäuser, Basel, 2001, pp. 341–363.

    Chapter  Google Scholar 

  29. Z. Léka, A Katznelson-Tzafriri type theorem in Hilbert spaces, Proc. Amer. Math. Soc. 137 (2009), 3763–3768.

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Léka, Time regularity and functions of the Volterra operator, Studia Math. 20 (2014), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Le Merdy. H8 functional calculus and square function estimates for Ritt operators, Rev. Mat. Iberoam. 30 (2014), 1149–1190.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Le Merdy and Q. Xu, Maximal theorems and square functions for analytic operators on Lpspaces, J. Lond. Math. Soc. (2) 86 (2012), 343–365.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Lyubich, Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition, Studia Math. 134 (1999), 153–167.

    MathSciNet  MATH  Google Scholar 

  34. M. M. Martínez, Decay estimates of functions through singular extensions of vector-valued Laplace transforms, J. Math. Anal. Appl. 375 (2011), 196–206.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Nagy and J. Zemánek, A resolvent condition implying power boundedness, Studia Math. 134 (1999), 143–151.

  36. O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.

    Book  MATH  Google Scholar 

  37. O. Nevanlinna, On the growth of the resolvent operators for power bounded operators, in Linear Operators, Polish Acad. Sci., Warsaw, 1997, pp. 247–264.

    Google Scholar 

  38. O. Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001), 113–134.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Ornstein and L. Sucheston, An operator theorem on L1 convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631–1639.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Seifert, Some improvements of the Katznelson-Tzafriri theorem on Hilbert space, Proc. Amer. Math. Soc. 143 (2015), 3827–3838.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Seifert, A quantified Tauberian theorem for sequences, Studia Math. 227 (2015), 183–192.

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Vitse, Functional calculus under the Tadmor-Ritt condition, and free interpolation by polynomials of a given degree, J. Funct. Anal. 210 (2004), 43–72.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Zarrabi, Some results of Katznelson-Tzafriri type, J. Math. Anal. Appl. 397 (2013), 109–118.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Seifert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifert, D. Rates of decay in the classical Katznelson-Tzafriri theorem. JAMA 130, 329–354 (2016). https://doi.org/10.1007/s11854-016-0039-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-016-0039-3

Navigation