Skip to main content
Log in

Algebra properties for Sobolev spaces — applications to semilinear PDEs on manifolds

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this work, we aim to prove algebra properties for generalized Sobolev spaces W s,pL on a Riemannian manifold (or more general homogeneous type space as graphs), where W s,p is of Bessel-type W s,p:= (1+L)s/m(L p) with an operator L generating a heat semigroup satisfying off-diagonal decays. We do not require any assumption on the gradient of the semigroup. Instead, we propose two different approaches (one by paraproducts associated to the heat semigroup and another one using functionals). We also study the action of nonlinearities on these spaces and give applications to semi-linear PDEs. These results are new on Riemannian manifolds (with a non-bounded geometry) and even in euclidean space for Sobolev spaces associated to second order uniformly elliptic operators in divergence form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio, M. Miranda Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, Quad. Mat., Dept. Math, Seconda Univ. Napoli, Caserta, 2004, pp. 1–45.

    Google Scholar 

  2. P. Auscher, On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates, Mem. Amer. Math. Soc. 186 (2007), no. 871.

  3. P. Auscher and T. Coulhon, Riesz transform on manifolds and Poincaré inequalities, Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 531–555.

    MathSciNet  MATH  Google Scholar 

  4. P. Auscher, A. McIntosh and E. Russ, Hardy spaces of differential forms on Riemannian manifolds, J. Geom. Anal. 18 (2008), 192–248.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Auscher, A. McIntosh, and P. Tchamitchian, Noyau de la chaleur d’opérateurs elliptiques complexes, Math. Res. Lett. 1 (1994), 35–43.

    MathSciNet  MATH  Google Scholar 

  6. P. Auscher, A. McIntosh, and P. Tchamitchian, Heat kernels of second order of complex elliptic operators and applications, J. Funct. Anal. 152 (1998), 22–73.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Auscher and P. Tchamitchian, Square Root Problem for Divergence Operators and Related Topics, Astérisque 249 (1998).

  8. N. Badr, A. Jiménez-del-Toro, and J. M. Martell, L p self-improvement of generalized Poincaré inequalities in spaces of homogeneous type, J. Funct. Anal. 260 (2011), 3147–3188.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Badr and E. Russ, Interpolation of Sobolev spaces, Littlewood-Paley inequalities and Riesz transforms on graphs, Publ. Mat. 53 (2009), 273–328.

    MathSciNet  MATH  Google Scholar 

  10. M. T. Barlow, R. F. Bass, and T. Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces, J. Math. Soc. Japan 58 (2006), 485–519.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Related Fields 79 (1988), 543–623.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Bernicot, A T(1)-Theorem in relation to a semigroup of operators and applications to new paraproducts, Trans. Amer. Math. Soc. 364 (2012), 6071–6108.

    Article  MathSciNet  Google Scholar 

  13. F. Bernicot and C. Martell, Self-improving properties for abstract Poincaré type inequalities, arXiv:1107.2260 [math. CA].

  14. F. Bernicot and Y. Sire, Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure, arXiv:1110.0338, [math. AP].

  15. F. Bernicot and J. Zhao, New abstract Hardy spaces, J. Funct. Anal. 255 (2008), 1761–1796.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Bernicot and J. Zhao, Abstract framework for John Nirenberg inequalities and applications to Hardy spaces, Ann. Sci. Norm. Super. Pisa Cl. Sci. (5), to appear.

  17. J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), 209–246.

    MathSciNet  MATH  Google Scholar 

  18. G. Bourdaud, Le calcul fonctionnel dans les espaces de Sobolev, Invent. Math. 104 (1991), 435–446.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Bourdaud and W. Sickel, Composition operators on function spaces with fractional order of smoothness, Harmonic Analysis and Nonlinear Partial Differential Equations, Research Institute for Mathematical Sciences (RIMS), Kyoto, 2011, pp. 93–132.

  20. R. R. Coifman and Y. Meyer, Au del`a des opérateurs pseudo-diffeŕentiels, Astérisque 57, (1978).

  21. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer-Verlag, Berlin-New York, 1971.

    MATH  Google Scholar 

  22. T. Coulhon and X. T. Duong, Riesz transforms for 1 ≤ p ≤ 2. Trans. Amer. Math. Soc. 351 (1999), 1151–1169.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Coulhon, E. Russ and V. Tardivel-Nachef, Sobolev algebras on Lie groups and Riemannian manifolds, Amer. J. Math. 123 (2001), 283–342.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Dorronsoro, A characterization of potential spaces, Proc. Amer. Math. Soc. 95 (1985), 21–31.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Dungey, A. F. M. ter Elst, and D. W. Robinson, Analysis on Lie Groups with Polynomial Growth, Birkäuser Boston Inc., Boston, MA, 2003.

    Book  MATH  Google Scholar 

  26. X. T. Duong and L. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943–973.

    Article  MathSciNet  MATH  Google Scholar 

  27. X. T. Duong and L. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation and applications, Comm. Pure Appl. Math. 58 (2005), 1375–1420.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Frey, Paraproducts via H -functional calculus and a T (1)-Theorem for non-integral operators, Ph.D. Thesis (2011), available at http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1687378.

  29. M. P. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math. 12 (1959), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Gallagher and Y. Sire, Besov algebras on Lie groups of polynomial growth and related results, available at http://arxiv.org/abs/1010.0154

  31. A. Grigor’yan, The heat equation on a non-compact Riemannian manifold, Math. USSR-Sb. 72 (1992), no. 1, 47–77.

    Article  MathSciNet  Google Scholar 

  32. Y. Guivarc’h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333–379.

    MathSciNet  MATH  Google Scholar 

  33. A. Gulisashvili and M. A. Kon, Exact smoothing properties of Schrödinger semigroups, Amer. J. Math. 118 (1996), 1215–1248.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Hajlasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688.

    MathSciNet  Google Scholar 

  35. B. M. Hambly, Brownian motion on a homogeneous random fractal, Probab. Theory Related Fields 94 (1992), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Hofmann, S. Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), 37–116.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Hofmann, S. Mayboroda, and A. McIntosh, Second order elliptic operators with complex bounded measurable coefficients in L p, Sobolev and Hardy spaces, Ann. Sci. École Norm. Super. (4) 44 (2011), 723–800.

    MathSciNet  MATH  Google Scholar 

  38. O. Ivanovici and F. Planchon, On the energy critical Schrödinger equation in 3D non-trapping domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 1153–1177.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246–274.

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891–907.

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, Ann. of Math. (2) 167 (2008), 575–599.

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys. 214 (2000), 191–200.

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Kumagai, Estimates of transition densities for Brownian motion on nested fractals, Probab. Theory Related Fields 96 (1993), 205–224.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. McIntosh, Operators which have an H -calculus, Miniconference on Operator Theory and Partial Differential Equations, Centre Math. Analysis, ANU, Canberra, 1986, pp. 210–231.

    Google Scholar 

  45. Y. Meyer, Remarques sur un théor`eme de J. M. Bony, Rend. Circ. Mat. Palermo (2) 1981, suppl. 1, 1–20.

  46. A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103–147.

    Article  MathSciNet  MATH  Google Scholar 

  47. D. W. Robinson, Elliptic Operators and Lie Groups, Oxford University Press, New York, 1991.

    MATH  Google Scholar 

  48. T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, 1996.

    Book  MATH  Google Scholar 

  49. L. Saloff-Coste, Parabolic Harnack inequality for divergence-form second-order differential operators, Potential Anal. 4 (1995), 429–467.

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Saloff-Coste, Aspects of Sobolev Type Inequalities, Cambridge Univ. Press, Cambridge, 2002.

    MATH  Google Scholar 

  51. I. E. Segal, Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339–364.

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Sickel, Necessary conditions on composition operators acting on Sobolev spaces of fractional order. The critical case 1 < s < n/p, Forum Math. 9 (1997), 267–302.

    Article  MathSciNet  MATH  Google Scholar 

  53. W. Sickel, Conditions on composition operators which map a space of Triebel-Lizorkin type into a Sobolev spce. The case 1 < s < n/p, II, Forum Math. 10 (1998), 199–231.

    MathSciNet  MATH  Google Scholar 

  54. W. Sickel, Necessary condidtion on composition operators acting between Besov spaces. The case 1 < s < n/p. III, Forum Math. 10 (1998), 303–327.

    MathSciNet  MATH  Google Scholar 

  55. E. M. Stein, The characterization of functions arising as potentials I,II, Bull. Amer. Math. Soc. 67 (1961), 102–104; 68 (1962), 577–582.

    Article  MathSciNet  Google Scholar 

  56. R. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech 16 (1967), 1031–1060.

    MathSciNet  MATH  Google Scholar 

  57. T. Tao, Nonlinear Dispersive Equations, Local and Global Analysis, Amer. Math. Soc., Providence, RI, 2006.

    MATH  Google Scholar 

  58. M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser Boston Inc., Boston, MA, 1991.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Badr.

Additional information

First author is supported by the ANR under the project AFoMEN no. 2011-JS01-001-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badr, N., Bernicot, F. & Russ, E. Algebra properties for Sobolev spaces — applications to semilinear PDEs on manifolds. JAMA 118, 509–544 (2012). https://doi.org/10.1007/s11854-012-0043-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0043-1

Keywords

Navigation