Skip to main content
Log in

Heat equation with a singular potential on the boundary and the Kato inequality

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This paper is concerned with the heat equation in the half-space ℝ N+ with the singular potential function on the boundary,

$\left\{ \begin{gathered} \frac{\partial } {{\partial t}}u - \Delta u = 0\operatorname{in} \mathbb{R}_ + ^N \times (0,T), \hfill \\ \frac{\partial } {{\partial x_N }}u + \frac{\omega } {{|x|}}u = 0on\partial \mathbb{R}_ + ^N \times (0,T), \hfill \\ u(x,0) = u_0 (x) \geqslant ()0in\mathbb{R}_ + ^N , \hfill \\ \end{gathered} \right. $
((P))

where N ≥ 3, ω > 0, 0 < T ≤ ∞, and u 0C 0(ℝ N+ ). We prove the existence of a threshold number ω N for the existence and the nonexistence of positive solutions of (P), which is characterized as the best constant of the Kato inequality in ℝ N+ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Abdellaoui, I. Peral, and A. Primo, Influence of the Hardy potential in a semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 897–926.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.

    MATH  Google Scholar 

  3. P. Baras and L. Cohen, Complete blow-up after Tmax for the solution of a semilinear heat equation, J. Funct. Anal. 71 (1987), 142–174.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121–139.

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Cabré and Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potential singulier, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 973–978.

    Article  MATH  Google Scholar 

  6. J. Davila, L. Dupaigne, and M. Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal. 7 (2008), 795–817.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Galaktionov and I. V. Kamotski, On nonexistence of Baras-Goldstein type for higher-order parabolic equations with singular potentials, Trans. Amer. Math. Soc. 362 (2010), 4117–4136.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441–476.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. A. Goldstein and I. Kombe, Gaussian estimates and instantaneous blowup, Positivity 12 (2008), 75–82.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. A. Goldstein and Qi S. Zhang, On a degenerate heat equation with a singular potential, J. Funct. Anal. 186 (2001), 342–359.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. A. Goldstein and Qi S. Zhang, Linear parabolic equations with strong singular potentials, Trans. Amer. Math. Soc. 355 (2003), 197–211.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. W. Herbst, Spectral theory of the operator (p 2 +m 2)1/2Ze 2/r, Comm. Math. Phys. 53 (1977), 285–294.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Ishige and T. Kawakami, Global solutions of the heat equation with a nonlinear boundary condition, Calc. Var. Partial Differential Equations 39 (2010), 429–457.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Kombe, On the nonexistence of positive solutions to nonlinear degenerate parabolic equations with singular coefficients, Appl. Anal. 85 (2006), 467–478.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Kombe, Nonlinear degenerate parabolic equations for Baouendi-Grushin operators, Math. Nachr. 279 (2006), 756–773.

    Article  MathSciNet  MATH  Google Scholar 

  16. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.

    Google Scholar 

  17. P. Quittner and W. Reichel, Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions, Calc. Var. Partial Differential Equations 32 (2008), 429–452.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), 103–153.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Ishige.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishige, K., Ishiwata, M. Heat equation with a singular potential on the boundary and the Kato inequality. JAMA 118, 161–176 (2012). https://doi.org/10.1007/s11854-012-0032-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0032-4

Keywords

Navigation