Skip to main content
Log in

Interlacing properties and the Schur-Szegő composition

  • Published:
Functional Analysis and Other Mathematics

Abstract

Each degree n polynomial in one variable of the form (x+1)(x n−1+c 1 x n−2+⋅⋅⋅+c n−1) is representable in a unique way as a Schur-Szegő composition of n−1 polynomials of the form (x+1)n−1(x+a i ), see Kostov (2003), Alkhatib and Kostov (2008) and Kostov (Mathematica Balkanica 22, 2008). Set \(\sigma _{j}:=\sum _{1\leq i_{1}<\cdots <i_{j}\leq n-1}a_{i_{1}}\cdots a_{i_{j}}\). The eigenvalues of the affine mapping (c 1,…,c n−1)(σ 1,…,σ n−1) are positive rational numbers and its eigenvectors are defined by hyperbolic polynomials (i.e. with real roots only). In the present paper we prove interlacing properties of the roots of these polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz M, Stegun IA (eds) (1965) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, ISBN 0-486-61272-4

    Google Scholar 

  2. Alkhatib S, Kostov VP (2008) The Schur-Szegő composition of real polynomials of degree 2. Revista Matemática Complutense 21(1):191–206

    MATH  MathSciNet  Google Scholar 

  3. Kostov VP (2007) The Schur-Szegő composition for hyperbolic polynomials. CRAS Sér I 345(9):483–488. doi:10.1016/j.crma.2007.10.003

    MATH  MathSciNet  Google Scholar 

  4. Kostov VP (2008) The Schur-Szegő composition for real polynomials. CRAS Sér I 346:271–276

    MATH  MathSciNet  Google Scholar 

  5. Kostov VP (2008) Eigenvectors in the context of the Schur-Szegő composition of polynomials. Mathematica Balkanica 22(1–2):155–173

    MATH  MathSciNet  Google Scholar 

  6. Kostov VP (2009) A realization theorem in the context of the Schur-Szegő composition. Funct Anal Appl 43(2):147–150

    Article  MathSciNet  Google Scholar 

  7. Kostov VP, Shapiro BZ (2006) On the Schur-Szegő composition of polynomials. CRAS Sér I 343:81–86

    MATH  MathSciNet  Google Scholar 

  8. Kostov VP, Martínez-Finkelshtein A, Shapiro BZ (2009) Narayana numbers and Schur-Szegő composition. J Approx Theory 161(2):464–476

    Article  MATH  MathSciNet  Google Scholar 

  9. Obrechkoff N (2003) Zeros of polynomials. M Drinov Academic Publishing House, Sofia, p 342

    Google Scholar 

  10. Prasolov V (2004) Polynomials. Translated from the 2001 Russian second edition by Dimitry Leites. Algorithms and Computation in Mathematics, vol. 11. Springer-Verlag, Berlin, xiv+301 pp. ISBN: 3-540-40714-6. MR 2002d:51001

  11. Rahman QI, Schmeisser G (2002) Analytic Theory of Polynomials. London Math Soc Monogr (NS), vol 26. Oxford Univ Press, New York, NY

    MATH  Google Scholar 

  12. Sulanke RA (2002) The Narayana distribution. Special issue on lattice path combinatorics and applications (Vienna, 1998). J Statist Plann Inference 101(1–2):311–326

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Kostov.

Additional information

To the memory of Prof. V.I. Arnold.

Research partially supported by research project 20682 for cooperation between CNRS and FAPESP “Zeros of algebraic polynomials”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostov, V.P. Interlacing properties and the Schur-Szegő composition. Funct. Anal. Other Math. 3, 65–74 (2010). https://doi.org/10.1007/s11853-010-0039-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11853-010-0039-2

Keywords

Mathematics Subject Classification (2000)

Navigation