Skip to main content

Advertisement

Log in

Using terrestrial laser scanning to support ecological research in the rocky intertidal zone

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Scale-appropriate, foundational datasets are necessary for ecological analyses of the rocky intertidal ecosystem. We used terrestrial laser scanning (TLS) to characterize and quantify the rocky intertidal zone topography at a western U.S. coastal site (Rabbit Rock, Oregon) to support ecological research relating to potential climate-induced changes in distribution and abundance of intertidal invertebrates and a large-bodied shorebird, the Black Oystercatcher (Haematopus bachmani). Alternate available data (e.g., aerial photography, airborne LIDAR) proved inadequate or infeasible for development of a topographic surface model inclusive of intertidal area from Mean Lower Low Water to Mean Higher High Water tidal elevation. Our TLS-derived topographic surface model competently supported development of an invertebrate distribution model relative to tidal elevation and topography. Using the developed model, we estimated current and future aerial extent of the intertidal zone and potential foraging habitat for Black Oystercatcher in our study area. Intertidal zone area decreased from 7,194 m2 to 6,409 m2 and 3,070 m2 with 1 and 2 m sea-level rise, respectively. Surprisingly, due to the configuration of site substrate, potential foraging habitat for Black Oystercatcher increased from 5,658 to 5,903 m2 with 1 m sea-level rise, but declined to 3,068 m2 with 2 m sea-level rise. Our results demonstrate the utility of TLS for ecological research in the rocky intertidal zone. They further illustrate that climate change effects on ecological conditions may vary considerably depending on local configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11

Similar content being viewed by others

References

  • Andersen H-E, Reutebuch SE, McGaughey RJ (2006) A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can J Remote Sens 32:355–366

    Article  Google Scholar 

  • Bergman CM, Pattison J, Price E (2013) The Black Oystercatcher as a sentinal species in the recovery of the Northern abalone: contemporary diet of Black Oystercathers on Haida Gwaii includes an endangered prey species. Condor 115:800–807

    Article  Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O, Hare W, Huq S, Karoly D, Kattsov V, Kundzewicz Z, Liu J, Lohmann U, Manning M, Matsuno T, Menne B, Metz B, Mirza M, Nicholls N, Nurse L, Pachauri R, Palutikof J, Parry M, Qin D, Ravindranath N, Reisinger A, Ren J, Riahi K, Rosenzweig C, Rusticucci M, Schneider S, Sokona Y, Solomon S, Stott P, Stouffer R, Sugiyama T, Swart R, Tirpak D, Vogel C, Yohe G (2007) Climate change 2007: synthesis report. Cambridge University Press, Cambridge

    Google Scholar 

  • Brock JC, Purkis SJ (2009) The emerging role of lidar remote sensing in coastal research and resource management. J Coast Res SI(53):1–5

    Article  Google Scholar 

  • Chust G, Grande M, Galparsoro I, Uriarte A, Borja A (2010) Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: a case study within a Basque estuary. Estuar Coast Shelf Sci 89:200–213

    Article  Google Scholar 

  • Clark ML, Clark DB, Roberts DA (2004) Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens Environ 91:68–89

    Article  Google Scholar 

  • Clawges RM, Vierling K, Vierling L, Rowell E (2008) The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sens Environ 112:2064–2073

    Article  Google Scholar 

  • Cote J-F, Fournier RA, Frazer GW, Niemann KO (2012) A fine-scale architectural model of trees to enhance LiDAR-derived measurements of forest canopy structure. Agric For Meteorol 166–167:72–85

    Article  Google Scholar 

  • DiGruttolo N, Mohamed A (2010) Emerging unmanned aerial remote sensing system for intertidal zone modeling: a low-cost method of collecting remote sensing data for modeling short-term effects of sea level rise, Part I: raising awareness. Surv Land Inf Sci 70:111–118

    Google Scholar 

  • Environmental Research Systems Institute (2004) ArcGIS 9: using ArcMap. ESRI, Redlands

    Google Scholar 

  • Frank PW (1982) Effects of winter feeding on limpets by black oystercatchers, Haematopus bachmani. Ecology 63:1352–1362

    Article  Google Scholar 

  • Hazlitt SL, Ydenberg RC, Lank DB (2002) Territory structure, parental provisioning, and chick growth in the American black oystercatcher Haematopus bachmani. Ardea 90:219–227

    Google Scholar 

  • Helmuth BST, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiologial stress in the rocky intertidal zone. Biol Bull 201:374–384

    Article  Google Scholar 

  • Helmuth B, Broitman BR, Blanchette CA, Gilman S, Halpin P, Harley CDG, O’Donnell MJ, Hofmann GE, Menge B, Strickland D (2006) Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecol Monogr 76:461–479

    Article  Google Scholar 

  • Hudak AT, Crookston NL, Evans JS, Hall DE, Falkowski MJ (2008) Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens Environ 112:2232–2245

    Article  Google Scholar 

  • Irish JL, Lillycrop WJ (1999) Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS J Photogramm Remote Sens 54:123–129

    Article  Google Scholar 

  • Komar PD, Allan JC, Ruggiero P (2011) Sea level variations along the U. S Pacific Northwest coast: tectonic and climate controls. J Coast Res 27:808–823

    Article  Google Scholar 

  • Lindberg DR, Estes JA, Warheit KI (1998) Human influences on trophic cascades along rocky shores. Ecol Appl 8:880–890

    Article  Google Scholar 

  • Long AJ, Shennan I (1998) Models of rapid relative sea-level change in Washington and Oregon, USA. The Holocene 8:129–142

    Article  Google Scholar 

  • Marsh CP (1986) Rocky intertidal community organization: the impact of avian predators on mussel recruitment. Ecology 67:771–786

    Article  Google Scholar 

  • Martin D (2007) OPUS rapid static. Am Surveyor 4:44–47

    Google Scholar 

  • Martinuzzi S, Vierling LA, Gould WA, Falkowski MJ, Evans JS, Hudak AT, Vierling KT (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens Environ 113:2533–2546

    Article  Google Scholar 

  • Meager JJ, Schlacher TA, Green M (2011) Topographic complexity and landscape temperature patterns create a dynamic habitat structure on a rocky intertidal shore. Mar Ecol Prog Ser 428:1–12

    Article  Google Scholar 

  • Menge BA, Chan F, Lubchenco J (2008) Response of a rocky intertidal ecosystem engineer and community dominant to climage change. Ecol Lett 11:151–162

    Google Scholar 

  • Myers EP (2005) Review of progress on VDatum, a vertical datum transformation tool. Pages 974–980. In: Proceedings of MTS/IEEE Oceans 2005 Conference. 2:974–980.

  • Olsen MJ (2011a) Bin ‘n’ Grid: a simple program for statistical filtering of point cloud data. Lidar News 2:1–2

    Google Scholar 

  • Olsen MJ (2011b) Putting the pieces together—laser scan geo-referencing. Lidar News 1:1–4

    Google Scholar 

  • Olsen MJ, Johnstone E, Driscoll N, Ashford SA, Kuester F (2009) Terrestrial laser scanning of extended cliff sections in dynamic environments: parameter analysis. J Surv Eng 135:161–169

    Article  Google Scholar 

  • Olsen MJ, Johnstone E, Kuester F, Driscoll N, Ashford SA (2011) New automated point-cloud alignment for ground-based light detection and ranging data of long coastal sections. J Surv Eng 137:14–25

    Article  Google Scholar 

  • Parker B, Hess K, Milbert D, Gill S (2003) A national vertical datum transformation tool:VDatum. Sea Technol 44:10–15

    Google Scholar 

  • Parrish CE (2012) Coastal applications. In: Renslow MS (ed) Manual of airborne topographic lidar. American Society for Photogrammetry and Remote Sensing, Bethesda, pp 379–389

    Google Scholar 

  • Partnerships in Studies of Coasts and Oceans (PISCO) (2012) PISCO data access portal. http://osu.piscoweb.org/DataCatalogAccess/DataCatalogAccess.html Accessed March 2012

  • Popescu SC, Wynne RH, Scrivani JA (2004) Fusion of small-footprint Lidar and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA. For Sci 50:551–565

    Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  Google Scholar 

  • Renslow MS (ed) (2012) Manual of airborne topographic lidar. American Society of Photogrammetry and Remote Sensing, Bethesda

    Google Scholar 

  • Schoch GC, Dethier MN (1996) Scaling up: the statistical linkage between organismal abundance and geomorphology on rocky intertidal shorelines. J Exp Mar Biol Ecol 201:37–72

    Article  Google Scholar 

  • Schwarz CR, Snay RA, Soler T (2009) Accuracy assessment of the National Geodetic Survey’s OPUS-RS utility. GPS Solutions 13:119–132

    Article  Google Scholar 

  • Seavey JR, Gilmer B, McGarigal KM (2011) Effect of sea-level rise on piping plover (Charadrius melodus) breeding habitat. Biol Conserv 144:393–401

    Article  Google Scholar 

  • Soule ME, Estes JA, Miller B, Honnold DL (2005) Strongly interacting species: conservation policy, management, and ethics. Bioscience 55:168–176

    Article  Google Scholar 

  • Tomanek L, Helmuth B (2002) Physiological ecology of rocky intertidal organisms: a synergy of concepts. Integr Comp Biol 42:771–775

    Article  Google Scholar 

  • Valle M, Borja A, Chust G, Galparsoro I, Garmendia JM (2011) Modelling suitable estuarine habitats for Zostera noltii, using Ecological Niche Factor Analysis and bathymetric LiDAR. Estuar Coast Shelf Sci 94:144–154

    Article  Google Scholar 

  • Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM (2008) Lidar: shedding new light on habitat characterization and modeling. Front Ecol Environ 6:90–98

    Article  Google Scholar 

  • White SA, Parrish CE, Calder BR, Pe’eri S, Rzhanov Y (2011) LIDAR-derived national shoreline: empirical and stochastic uncertainty analyses. J Coast Res SI(62):62–74

    Article  Google Scholar 

  • Wootton JT (1992) Indirect effects, prey susceptibility, and habitat selection: impacts of birds on limpets and algae. Ecology 73:981–991

    Article  Google Scholar 

  • Wootton JT (1993) Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. Am Nat 141:71–89

    Article  Google Scholar 

  • Wozencraft JM, Lillycrop WJ (2003) SHOALS airborne coastal mapping: past, present, and future. J Coast Res 38:207–215

    Google Scholar 

  • Young AP, Olsen MJ, Driscoll N, Flick RE, Gutierrez R, Guza RT, Johnstone E, Kuester F (2010) Comparison of airborne and terrestrial lidar estimates of seacliff erosion in southern California. Photogramm Eng Remote Sens 76:421–427

    Article  Google Scholar 

Download references

Acknowledgments

The work presented here was made possible by USGS and USFWS Climate Change Partnership. Dr. Bruce Menge and Jerod Sapp (PISCO) generously provided long-term intertidal invertebrate data and assisted with their retrieval and interpretation. Patricia Haggerty of the USGS Forest and Rangeland Ecosystem Science Center provided critical and helpful reviews. Leica Geosystems and Maptek I-Site provided software used for this study. Oregon State University graduate students Shawn Butcher and Keith Williams assisted with acquisition and processing the TLS data. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff P. Hollenbeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollenbeck, J.P., Olsen, M.J. & Haig, S.M. Using terrestrial laser scanning to support ecological research in the rocky intertidal zone. J Coast Conserv 18, 701–714 (2014). https://doi.org/10.1007/s11852-014-0346-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-014-0346-8

Keywords

Navigation