Skip to main content
Log in

Residual income valuation and management remuneration under uncertainty: a note

  • Original Paper
  • Published:
Review of Managerial Science Aims and scope Submit manuscript

Abstract

The so-called Residual Income Valuation theorem states that the value of a project or a firm can be determined either on the basis of cash flows between the firm and its owners or by using residual incomes, provided that cash flows and residual incomes are derived from a set of accounting data that fulfills certain regularity conditions. Residual income is defined as accounting earnings reduced by a capital charge on book equity capital. In this paper it is shown that this theorem also applies when residual incomes and in particular the discount factors are uncertain. Risk-aversion of principals and agents is taken into account on the basis of properly defined risk-adjusted discount rates. This approach is preferred as it facilitates practical application. Implications are drawn with regards to valuation but also to the design of management remuneration systems. It is shown that the capital charge rate used to determine the performance-related compensation component should be reduced below the risk-adjusted rate, if the fixed component falls below a certain threshold. Absent agency cost or other externalities, the reduction of the capital charge rate is required to avoid underinvestment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Ibd., p. 305.

  2. See, e.g., Shiller (1981) or LeRoy and Porter (1981).

  3. Ibd., p. 179.

  4. Campbell et al. (1997), p. 334.

  5. See Feltham and Ohlson (1995), p. 694, excluding the “dirty part”, Van Cauwenbrege and De Beelde (2007), p. 14, including this element.

  6. For a detailed discussion see Isidro et al. (2006), Van Cauwenbrege and De Beelde (2007), and Krotter (2007).

  7. Similar Peasnell (1982), p. 364.

  8. See Smith and Wickens (2002).

  9. A rigorous definition of the flow of information and conditional expectations in this context can be found in Wilhelm and Schosser (2007).

  10. Campbell et al. (1997), p. 294; Cochrane (2005), p. 24.

  11. See also Cochrane (2005), p. 25.

  12. Wilhelm (1983), p. 58, Campbell et al. (1997), p. 293.

  13. For details of the derivation see Appendix 1.1.

  14. Ohlson (1999), pp. 150, 160.

  15. See also Ohlson (1995), p. 148.

  16. Krotter (2007) analyzes the impact of permanent and temporary dirty surpluses in more detail.

  17. Numerical examples can be found on the internet as an electronic supplemental material (ESM) to the online publication.

  18. Fama used the term “expectation adjustment variable” already in 1977 to derive conditions for the application of the single-period CAPM in a multi-period setting.

  19. Similar Wilhelm (2005), p. 642.

  20. Laitenberger (2006) comes to a similar conclusion.

  21. See also Campbell et al. (1997), p. 255.

  22. Parts of the English literature refer to this as the “EBO” model, referring to the contributions by Edwards and Bell (1961) and Ohlson (1995); see, e.g., Neill and Pfeiffer (2005), p. 42.

  23. Refer to Table 1 and the corresponding literature mentioned in the introduction.

  24. See, e.g., Ewert and Wagenhofer (2008), p. 76.

  25. See also Peasnell (1982) for the case of certain residual incomes and certain discount rates, p. 367.

  26. For details see Appendix 1.1.

  27. See for example Hermann and Richter (2003).

  28. E.g., Koller et al. (2005), pp. 284–286.

  29. See for an empirical application Dimson et al. (2002).

  30. See Goldenberg and Schmidt (1996) for a support of this statement on the basis of simulations.

  31. See, e.g., Gebhardt et al. (2001), Claus and Tomas (2001), Daske et al. (2006).

  32. See also Hughes et al. (2009).

  33. See also Butler and Schachter (1989), p 15.

  34. See Jacquier et al. (2005) for compound factors with normal distributed error terms.

  35. See Christensen et al. (2002), p. 6, also Dutta (2003), p. 83, both with further references.

  36. The risk inherent in a cash flow is called idiosyncratic if \( Cov_{t} \left[ {\tilde{C}_{t + 1} ,\tilde{M}_{t + 1} } \right] = 0 \) and systematic otherwise. See Cochrane (2005), p. 15.

  37. \( \tilde{s}_{t + \tau } \) denotes the compensation payment, \( \tilde{S}_{t} \) the value of the payment as of t.

  38. See already Ross (1974).

  39. See, e.g., Christensen et al. (2002), p. 6., Dutta (2003), p. 74, Baldenius et al. (2007), p. 841.

  40. See, e.g., Stewart (1991), pp. 224, 282, Ehrbar (1998), p. 3 and pp. 93–115.

  41. Velthuis (2003), p. 18, comes to a similar result in the context of the CAPM.

  42. See the sources in fn. 40. The human resources literature includes empirical evidence on the relationship between (among multiple other factors) the compensation of executives and firm size; e.g., Kostluk (1989). This relation seems to apply to the fixed salary component as well; Core et al. (1999), p. 386.

  43. Similar Hughes et al. (2009), p. 249.

References

  • Ang A, Liu J (2001) A general affine earnings valuation model. Rev Account Stud 6:397–425

    Article  Google Scholar 

  • Anthony R, Govindarajan V (2006) Management control systems, 12th edn. McGraw-Hill, Boston

    Google Scholar 

  • Antle R, Eppen G (1985) Capital rationing and organizational slack in capital budgeting. Managerial Sci 31:163–174

    Google Scholar 

  • Baldenius T, Dutta S, Reichelstein S (2007) Cost allocation for capital budgeting decisions. Account Rev 82:837–867

    Article  Google Scholar 

  • Butler J, Schachter B (1989) The investment decision: estimating risk and risk-adjusted discount rates. Financ Manag 18:13–22

    Article  Google Scholar 

  • Campbell J, Lo A, MacKinlay A (1997) The econometrics of financial markets. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Christensen P, Feltham G, Wu M (2002) “Cost of Capital” in residual income for performance evaluation. Account Rev 77:1–23

    Article  Google Scholar 

  • Claus J, Tomas J (2001) Equity premia as low as three percent? Evidence from analysts’ earnings forecasts for domestic and international stock markets. J Finance 56:1629–1666

    Article  Google Scholar 

  • Cochrane J (2005) Asset pricing, revised edn. Princeton University Press, Princeton, NJ

  • Core J, Holthausen R, Larcker D (1999) Corporate governance, chief executive officer compensation, and firm performance. J Financ Econ 51:371–406

    Article  Google Scholar 

  • Daske H, Gebhardt G, Klein S (2006) Estimating the expected cost of equity capital using analysts’ consensus forecasts. Schmalenbach Bus Rev 58:2–36

    Google Scholar 

  • Dimson E, Marsh P, Staunton M (2002) Triumph of the optimists, 101 years of global investment returns

  • Dutta S (2003) Capital budgeting and managerial compensation: incentive and retention effects. Account Rev 78:71–93

    Article  Google Scholar 

  • Edwards E, Bell P (1961) The theory and measurement of business income. University of California Press, Berkeley

    Google Scholar 

  • Ehrbar A (1998) Stern Stewart’s EVA, the real key to creating value. Wiley, New York

    Google Scholar 

  • Ewert R, Wagenhofer A (2008) Interne Unternehmensrechnung, 7th edn. Springer, Berlin

  • Fama E (1977) Risk-adjusted discount rates and capital budgeting under uncertainty. J Financ Econ 5:3–24

    Article  Google Scholar 

  • Feltham G, Ohlson J (1995) Valuation and clean surplus accounting for operating and financial activities. Contemp Account Res 11:689–731

    Article  Google Scholar 

  • Feltham G, Ohlson J (1999) Residual earnings valuation with risk and stochastic interest rates. Account Rev 74:165–183

    Article  Google Scholar 

  • Gebhardt W, Lee C, Swaminathan B (2001) Toward an implied cost of capital. J Account Res 39:135–176

    Article  Google Scholar 

  • Gode D, Ohlson J (2004) Accounting-based valuation with changing interest rates. Rev Account Stud 39:135–176

    Google Scholar 

  • Goldenberg D, Schmidt R (1996) On estimating the expected rate of return in diffusion price models with application to estimating the expected return on the market. J Financ Quant Anal 31:605–631

    Article  Google Scholar 

  • Hermann V, Richter F (2003) Pricing with performance-controlled multiples. Schmalenbach Bus Rev 55:194–219

    Google Scholar 

  • Hughes J, Liu J, Liu J (2009) On the relation between expected returns and implied cost of equity. Rev Account Stud 14:246–259

    Article  Google Scholar 

  • Isidro H, O’Hanlon J, Young S (2006) Dirty surplus accounting flows and valuation errors. Abacus 42:302–344

    Article  Google Scholar 

  • Jacquier E, Kane A, Marcus A (2005) Optimal estimation of the risk premium for the long run and asset allocation: a case of compound estimation risk. J Financ Econom 3:37–55

    Article  Google Scholar 

  • Kaplan R, Atkinson A (1998) Advanced management accounting, 3rd edn. Prentice-Hall Inc., Upper Saddle River

  • Kloock J (1981) Mehrperiodige Investitionsrechnung auf der Basis kalkulatorischer und handelsrechtlicher Erfolgsrechnungen. Zeitschrift für Betriebswirtschaftliche Forsch 33:873–890

    Google Scholar 

  • Koller T, Goedhardt M, Wessels D (2005) Valuation, measuring and managing the value of companies. Wiley, New York

    Google Scholar 

  • Kostluk P (1989) Firm size and executive compensation. J Hum Resour 25:90–105

    Article  Google Scholar 

  • Krotter S (2007) Zur Relevanz von Kongruenzdurchbrechungen für die Bewertung und Performance-messung mit Residualgewinnen. Die Betriebswirtschaft 67:692–718

    Google Scholar 

  • Laitenberger J (2006) Rendite und Kapitalkosten. Zeitschrift für Betriebswirtschaft 76:79–101

    Article  Google Scholar 

  • LeRoy S, Porter R (1981) The present value relation: tests based on variance bounds. Econometrica 49:555–574

    Article  Google Scholar 

  • Lücke W (1955) Investitionsrechnungen auf der Grundlage von Ausgaben oder Kosten? Zeitschrift für Handelswissenschaftliche Forsch 7:311–324

    Google Scholar 

  • Marusev A, Pfingsten A (1993) Das Lücke-Theorem bei gekrümmter Zinsstruktur-Kurve, Zeitschrift für Betriebswirtschaftliche Forsch 45:361–365

    Google Scholar 

  • Neill J, Pfeiffer G (2005) How does bankruptcy risk affect stock values? J Appl Bus Res 21:41–49

    Google Scholar 

  • Ohlson J (1995) Earnings, book values, and dividends in equity valuation. Contemp Account Res 11:661–687

    Article  Google Scholar 

  • Ohlson J (1999) On transitory earnings. Rev Account Stud 4:145–162

    Article  Google Scholar 

  • Palepu K, Healy P, Peek E (2010) Business analysis and valuation, IFRS edition, 2nd edn. Ohio

  • Peasnell K (1982) Some formal connections between economic values and yields and accounting numbers. J Bus Finance Account 9:361–381

    Article  Google Scholar 

  • Penman S (1998) A synthesis of equity valuation techniques and the terminal value calculation for the dividend discount model. Rev Account Stud 2:303–323

    Article  Google Scholar 

  • Penman S (2009) Financial statement analysis and security valuation, 4th edn. The McGraw-Hill, New York

  • Penman S, Sougiannis T (1998) A comparison of dividend, cash flow, and earnings approaches to equity valuation. Contemp Account Res 15:343–383

    Article  Google Scholar 

  • Preinreich G (1937) Valuation and amortization. Account Rev 12:209–226

    Google Scholar 

  • Reichelstein S (1997) Investment decision and managerial performance evaluation. Rev Account Stud 2:157–180

    Article  Google Scholar 

  • Rogerson W (1997) Intertemporal cost allocation and managerial investment incentives: a theory explaining the use of economic value added as a performance measure. J Polit Econ 105:770–795

    Article  Google Scholar 

  • Ross S (1974) Portfolio turnpike theorems for constant policies. J Financ Econ 1(2):171–198

    Google Scholar 

  • Samuelson P (1965) Proof that properly anticipated prices fluctuate randomly. Ind Manage Rev 6:41–49

    Google Scholar 

  • Shiller R (1981) Do stock prices move too much to be justified by subsequent changes in dividends? Am Econ Rev 71:421–436

    Google Scholar 

  • Smith P, Wickens M (2002) Asset pricing with observable discount factors. J Econ Surv 16:397–446

    Article  Google Scholar 

  • Stewart G (1991) The quest for value. HarperBusiness, New York

    Google Scholar 

  • Van Cauwenbrege P, De Beelde I (2007) On the IASB comprehensive income project: an analysis of the case for dual income display. Abacus 43:1–26

    Article  Google Scholar 

  • Velthuis L (2003) Managemententlohnung auf Basis des Residualgewinns: theoretische Anforderungen und praxisrelevante Konzepte. Zeitschrift für Betriebswirtschaft Ergänzungsheft 4:111–134

    Google Scholar 

  • Wilhelm J (1983) Finanztitelmärkte und Unternehmensfinanzierung. Springer, Berlin

    Book  Google Scholar 

  • Wilhelm J (2005) Unternehmensbewertung–Eine finanzmarkttheoretische Untersuchung. Zeitschrift für Betriebswirtschaft 75:631–665

    Google Scholar 

  • Wilhelm J, Schosser J (2007) A note on arbitrage-free asset prices with and without personal income taxes. Rev Manag Sci 1:133–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon Elsner, Hans-Christian Krumholz or Frank Richter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 122 kb).

Appendices

Appendix 1

1.1 1.1 Derivation of multi-period valuation models by forward iteration

The following analysis is used to provide background to three equations used in the text, namely Eqs. 8, 10, and 27. The starting point is the single-period SDF which is based on assumption 2.

$$ \tilde{V}_{t} = E_{t} \left[ {\left( {\tilde{C}_{t + 1} + \tilde{V}_{t + 1} } \right)\tilde{M}_{t + 1} } \right] $$

In a forward-iteration procedure the definition of \( \tilde{V}_{t} \) is used and inserted similarly for \( \tilde{V}_{t + 1} \) as well:Footnote 43

$$ \tilde{V}_{t} = E_{t} \left[ {\left( {\tilde{C}_{t + 1} + E_{t + 1} \left[ {\left( {\tilde{C}_{t + 2} + \tilde{V}_{t + 2} } \right)\tilde{M}_{t + 2} } \right]} \right)\tilde{M}_{t + 1} } \right] $$

As \( \tilde{M}_{t + 1} \) will be known at t + 1, it can be integrated into the expectation operator as of that point in time. The two single-period discount factors \( \tilde{M}_{t + 1} \) and \( \tilde{M}_{t + 2} \) then can be aggregated to \( \tilde{M}_{t,t + 2} \):

$$ \begin{aligned} \tilde{V}_{t} & = E_{t} \left[ {\tilde{C}_{t + 1} \tilde{M}_{t + 1} + E_{t + 1} \left[ {\left( {\tilde{C}_{t + 2} + \tilde{V}_{t + 2} } \right)\tilde{M}_{t + 2} \tilde{M}_{t + 1} } \right]} \right] \\ = E_{t} \left[ {\tilde{C}_{t + 1} \tilde{M}_{t + 1} + E_{t + 1} \left[ {\left( {\tilde{C}_{t + 2} + \tilde{V}_{t + 2} } \right)\tilde{M}_{t,t + 2} } \right]} \right] \\ \end{aligned} $$

Application of the law of iterated expectations leads to the following interim result:

$$ \tilde{V}_{t} = E_{t} \left[ {\tilde{C}_{t + 1} \tilde{M}_{t + 1} } \right] + E_{t} \left[ {\left( {\tilde{C}_{t + 2} + \tilde{V}_{t + 2} } \right)\tilde{M}_{t,t + 2} } \right] $$

Continuation of this procedure for T periods in total leads to the multi-period valuation formula as shown in Eq. 8.

$$ \tilde{V}_{t} = \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{C}_{t + \tau } \tilde{M}_{t,t + \tau } } \right] + E_{t} \left[ {\tilde{V}_{t + T} \tilde{M}_{t,t + T} } \right]} $$

The starting point of this analysis is set by assumption 2. This is not the case for the next valuation equation (i.e., Eq. 10), which is supposed to be equivalent to the SDF result and facilitated by using a modification of the starting point:

$$ \tilde{V}_{t} = E_{t} \left[ {\left( {\tilde{C}_{t + 1} + \tilde{V}_{t + 1} } \right)\tilde{M}_{t + 1} } \right] \Leftrightarrow 1 = E_{t} \left[ {{\frac{{\tilde{C}_{t + 1} + \tilde{V}_{t + 1} }}{{\tilde{V}_{t} }}}\tilde{M}_{t + 1} } \right] $$

The right-hand side states that the joint expectation of the gross rate of return and the SDF equals one. But \( \tilde{M}_{t + 1} \) is not the only functional to achieve this. Trivially, \( \tilde{D}_{t + 1} = \left( {1 + \tilde{R}_{t + 1} } \right)^{ - 1} \) constitutes also a valid discount factor, which leads to the value of one in any state of nature and thereby also on average.

$$ 1 = E_{t} \left[ {{\frac{{\tilde{C}_{t + 1} + \tilde{V}_{t + 1} }}{{\tilde{V}_{t} }}}\tilde{D}_{t + 1} } \right] \Leftrightarrow \tilde{V}_{t} = E_{t} \left[ {\left( {\tilde{C}_{t + 1} + \tilde{V}_{t + 1} } \right)\tilde{D}_{t + 1} } \right] $$

With the right-hand side of the above expression we have a new starting point for the forward iteration procedure. This leads to Eq. 10, which uses the firm-specific discount factors instead of the SDF:

$$ \tilde{V}_{t} = \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{C}_{t + \tau } \tilde{D}_{t,t + \tau } } \right] + E_{t} \left[ {\tilde{V}_{t + T} \tilde{D}_{t,t + T} } \right]} $$

The starting point for Eq. 27 is again a variation of this theme.

$$ 1 = E_{t} \left[ {{\frac{{\tilde{C}_{t + 1} + \tilde{B}_{t + 1} }}{{\tilde{B}_{t} }}}\tilde{H}_{t + 1} } \right] $$

Here, economic values are replaced by book values and a discount factor is used, which is based on accounting values. The product within the expectation operator is always one, as is in the previous case.

The following DCF model follows by the application of the forward iteration procedure, too:

$$ \tilde{B}_{t} = \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{C}_{t + \tau } \tilde{H}_{t,t + \tau } } \right] + E_{t} \left[ {\tilde{B}_{t + T} \tilde{H}_{t,t + T} } \right]} $$

In contrast to the two previous market-value versions, this model yields the book value of capital.

Appendix 2

2.1 2.1 Proof of the multi-period formulation of Eq. 33 by backward iteration

The multi-period value of the agent’s compensation can be formulated as follows:

$$ \tilde{S}_{t} = E_{t} \left[ {\left( {\alpha + \beta \tilde{\pi }_{t + 1} + \tilde{S}_{t + 1} } \right)\tilde{M}_{t + 1} } \right] $$

Without loss of generality we assume a constant shadow rate r. The compensation of the period t + 1 can be valued separately from the payments afterwards:

$$ \begin{aligned} \tilde{S}_{t} & = {\frac{\alpha }{1 + r}} + \beta E_{t} \left[ {\tilde{\pi }_{t + 1} \tilde{M}_{t + 1} } \right] + E_{t} \left[ {\left( {\alpha + \beta \tilde{\pi }_{t + 2} + \tilde{S}_{t + 2} } \right)\tilde{M}_{t,t + 2} } \right] \\ = \sum\limits_{\tau = 1}^{2} {{\frac{\alpha }{{\left( {1 + r} \right)^{\tau } }}}} + \beta \sum\limits_{\tau = 1}^{2} {E_{t} \left[ {\tilde{\pi }_{t + \tau } \tilde{M}_{t,t + \tau } } \right] + E_{t} \left[ {\tilde{S}_{t + 2} \tilde{M}_{t,t + 2} } \right]} \\ \end{aligned} $$

Continuation of this procedure for T periods in total leads with \( \tilde{S}_{t + T} = 0 \) to

$$ \tilde{S}_{t} = \sum\limits_{\tau = 1}^{T} {{\frac{\alpha }{{\left( {1 + r} \right)^{\tau } }}}} + \beta \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{\pi }_{t + \tau } \tilde{M}_{t,t + \tau } } \right]} , $$

which equals a constant (the value of the fixed salary payments) and a fraction of the value of future residual incomes. Next the value of residual incomes needs to be determined on the basis of the SDF:

$$ \begin{aligned} \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{\pi }_{t + \tau } \tilde{M}_{t,t + \tau } } \right]} & = \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\left( {\tilde{C}_{t + \tau } - \left( {1 + \tilde{R}_{t + \tau } } \right)\tilde{B}_{t + \tau - 1} + \tilde{B}_{t + \tau } } \right)\tilde{M}_{t,t + \tau } } \right]} \\ = \tilde{V}_{t} - \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\left( {1 + \tilde{R}_{t + \tau } } \right)\tilde{B}_{t + \tau - 1} \tilde{M}_{t,t + \tau } } \right]} + \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{B}_{t + \tau } \tilde{M}_{t,t + \tau } } \right]} \\ \end{aligned} $$

We define the partial value of the first sum above by \( \tilde{W}_{t} \), which can be determined by recursion, starting in \( t + T - 1 \), i.e., one period before liquidation:

$$ \tilde{W}_{t + T - 1} = E_{t + T - 1} \left[ {\left( {1 + \tilde{R}_{t + T} } \right)\tilde{B}_{t + T - 1} \tilde{M}_{t + T} } \right] = \tilde{B}_{t + T - 1} $$

Moving one further period back in time to t + T − 2 leads to:

$$ \begin{aligned} \tilde{W}_{t + T - 2} & = E_{t + T - 2} \left[ {\left( {1 + \tilde{R}_{t + T - 1} } \right)\tilde{B}_{t + T - 2} \tilde{M}_{t + T - 1} } \right] + E_{T - 2} \left[ {\tilde{W}_{t + T - 1} \tilde{M}_{t + T - 1} } \right] \\ = \tilde{B}_{t + T - 2} + E_{T - 2} \left[ {\tilde{B}_{t + T - 1} \tilde{M}_{t + T - 1} } \right] \\ \end{aligned} $$

in t + T − 3:

$$ \begin{aligned} \tilde{W}_{t + T - 3} & = \tilde{B}_{t + T - 3} + E_{t + T - 3} \left[ {\left( {\tilde{B}_{t + T - 2} + \tilde{B}_{t + T - 1} \tilde{M}_{t + T - 1} } \right)\tilde{M}_{t + T - 2} } \right] \\ = \tilde{B}_{t + T - 3} + E_{t + T - 3} \left[ {\tilde{B}_{t + T - 2} \tilde{M}_{t + T - 2} } \right] + E_{t + T - 3} \left[ {\tilde{B}_{t + T - 1} \tilde{M}_{t + T - 3,t + T - 1} } \right] \\ \end{aligned} $$

and finally in t:

$$ \tilde{W}_{t} = \tilde{B}_{t} + \sum\limits_{\tau = 1}^{T - 1} {E_{t} \left[ {\tilde{B}_{t + \tau } \tilde{M}_{t,t + \tau } } \right]} $$

Collecting terms:

$$ \begin{aligned} \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{\pi }_{t + \tau } \tilde{M}_{t,t + \tau } } \right]} & = \tilde{V}_{t} - B_{t} - \sum\limits_{\tau = 1}^{T - 1} {E_{t} \left[ {\tilde{B}_{t + \tau } \tilde{M}_{t,t + \tau } } \right]} + \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{B}_{t + \tau } \tilde{M}_{t,t + \tau } } \right]} \\ = \tilde{V}_{t} - \tilde{B}_{t} + E_{t} \left[ {\tilde{B}_{t + T} \tilde{M}_{t,t + T} } \right] \\ \end{aligned} $$

with \( \tilde{B}_{t + T} = 0 \) we finally get:

$$ \tilde{S}_{t} = \sum\limits_{\tau = 1}^{T} {{\frac{\alpha }{{\left( {1 + r} \right)^{\tau } }}}} + \beta \left( {\tilde{V}_{t} - \tilde{B}_{t} } \right) $$

Thus, the value of the total compensation is proportional to the value of the firm, which is the parameter the principal seeks to maximize as well.

2.2 2.2 Proof of the multi-period formulation of Eq. 35 by forward iteration

Next we proof that the capital charge rate has to be the risk-free rate also for multi-period projects. For single-period projects the remuneration has the following value to the agent:

$$ \tilde{S}_{t} = \beta E_{t} \left[ {\left( {\tilde{C}_{t + 1} - \left( {1 + k} \right)I_{t} } \right)\tilde{M}_{t + 1} } \right] \Rightarrow \beta E_{t} \left[ {\tilde{C}_{t + 1} \tilde{M}_{t + 1} } \right] - {\frac{1 + k}{1 + r}}I_{t} > 0 $$

A two-period project has the cash flows \( \tilde{C}_{t + 1} \) and \( \tilde{C}_{t + 2} \). As the depreciation schedule is not relevant for the RIV theorem to hold we choose no depreciation in the first period and full depreciation in the last (second) period. Thus, the criterion for the agent to support a project becomes

$$ \begin{gathered} E_{t} \left[ {\left( {\tilde{C}_{t + 1} - kI_{t} } \right)\tilde{M}_{t + 1} } \right] + E_{t} \left[ {\left( {\tilde{C}_{t + 2} - (1 + k)I_{t} } \right)\tilde{M}_{t,t + 2} } \right] > 0 \quad \hfill \\ \Leftrightarrow \mathop \sum \limits_{\tau = 1}^{2} E_{t} \left[ {\tilde{C}_{t + \tau } \tilde{M}_{t,t + \tau } } \right] - {\frac{k}{1 + r}}I_{t} - {\frac{1 + k}{{\left( {1 + r} \right)^{2} }}}I_{t} > 0. \hfill \\ \end{gathered} $$

Continuation of this procedure for T periods in total yields:

$$ \begin{gathered} \sum\limits_{\tau = 1}^{T} {E_{t} \left[ {\tilde{C}_{t + \tau } \tilde{M}_{t,t + \tau } } \right]} - \sum\limits_{\tau = 1}^{T - 1} {{\frac{k}{{(1 + r)^{\tau } }}}I_{t} - {\frac{1 + k}{{(1 + r)^{T} }}}I_{t} > 0} \quad \hfill \\ \Leftrightarrow \tilde{V}_{t} - I_{t} \left( {\sum\limits_{\tau = 1}^{T - 1} {{\frac{k}{{(1 + r)^{\tau } }}} + {\frac{1 + k}{{(1 + r)^{T} }}}} } \right) > 0 \hfill \\ \end{gathered} $$

To establish the proof it remains to show that for k = r

$$ \sum\limits_{\tau = 1}^{T - 1} {{\frac{k}{{(1 + r)^{\tau } }}} + {\frac{1 + k}{{(1 + r)^{T} }}} = 1} $$

holds. This follows by algebraic manipulation:

$$ \begin{gathered} \sum\limits_{\tau = 1}^{T - 1} {{\frac{k}{{(1 + r)^{\tau } }}} + {\frac{1 + k}{{(1 + r)^{T} }}} = 1} \Leftrightarrow \sum\limits_{\tau = 1}^{T} {{\frac{k}{{(1 + r)^{\tau } }}} + {\frac{1}{{(1 + r)^{T} }}} = 1} \hfill \\ \Leftrightarrow \sum\limits_{\tau = 1}^{T} {{\frac{k}{{(1 + r)^{\tau } }}} = 1 - (1 + r)^{ - T} } \hfill \\ \Leftrightarrow \frac{k}{r}(1 - (1 + r)^{ - T} ) = 1 - (1 + r)^{ - T} \Rightarrow k = r \hfill \\ \end{gathered} $$

Thus, proposition 6 is true also for multi-period projects.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsner, S., Krumholz, HC. & Richter, F. Residual income valuation and management remuneration under uncertainty: a note. Rev Manag Sci 6, 333–359 (2012). https://doi.org/10.1007/s11846-010-0058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11846-010-0058-x

Keywords

JEL Classification

Navigation