Skip to main content

Advertisement

Log in

Methodologies to assess paediatric adiposity

  • Review Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Introduction

Childhood obesity is associated with increased risk of adult obesity, cardiovascular disease, diabetes and cancer. Appropriate techniques for assessment of childhood adiposity are required to identify children at risk. The aim of this review was to examine core clinical measurements and more technical tools to assess paediatric adiposity.

Methods

The online databases PubMed, CINALH and EMBASE were searched and the abstracts identified were reviewed to determine appropriate studies. Their reference lists were also searched to identify further eligible studies. Publications were included if they described childhood measurement techniques or involved validation.

Results and Discussion

There are many body composition assessment tools available, none of which are direct. Each technique has limitations and a combination of methods may be used. The main clinical techniques are weight, height, body mass index (BMI) and circumferences which provide sufficient information to enable classification of overweight or obesity when growth centile charts and ratios are employed. Further investigation depends on resources available and examiner skill. Skinfold thicknesses are cost-effective but require technical training and only measure subcutaneous fat. Dual energy X-ray absorptiometry (DEXA), air displacement plethysmography (ADP), magnetic resonance imaging (MRI) and computed tomography (CT) are more costly and intensive, requiring the child to remain still for longer periods. DEXA and ADP are capable of accurately measuring adiposity but are unable to distinguish between fat depots. MRI and CT can distinguish intra-abdominal from subcutaneous adiposity and are considered gold standards, but CT is unsuitable for adiposity measurement in children due to high levels of radiation exposure. Ultrasound is a promising technique capable of measuring intra-abdominal adiposity in children but requires further validation.

Conclusion

The core clinical measurements of weight, height, BMI and circumferences are sufficient to enable diagnosis of paediatric overweight and obesity while more technical tools provide further insight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han JC, Lawlor DA, Kimm SY (2010) Childhood obesity. Lancet 375(9727):1737–1748. doi:10.1016/s0140-6736(10)60171-7

    PubMed Central  PubMed  Google Scholar 

  2. McGowan CA, McAuliffe FM (2010) The influence of maternal glycaemia and dietary glycaemic index on pregnancy outcome in healthy mothers. Br J Nutr 104(02):153–159

    CAS  PubMed  Google Scholar 

  3. Gunnell DJ, Frankel SJ, Nanchahal K, Peters TJ, Smith GD (1998) Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort. Am J Clin Nutr 67(6):1111–1118

    CAS  PubMed  Google Scholar 

  4. Vanhala M, Vanhala P, Kumpusalo E, Halonen P, Takala J (1998) Relation between obesity from childhood to adulthood and the metabolic syndrome: population based study. BMJ: Br Med J 317(7154):319

    CAS  Google Scholar 

  5. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC (2010) Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 362(6):485–493

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Goran MI (1998) Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity, and food intake. Pediatrics 101(Suppl 2):505–518

    CAS  PubMed  Google Scholar 

  7. Panpanich R, Garner P (1999) Growth monitoring in children. Cochrane Database Syst Rev 4

  8. UNICEF (2008) Experts’ consultation on growth monitoring and promotion strategies: program guidance for a way forward. Recommendations from a Technical Consultation. UNICEF Headquarters, New York, USA

  9. Gorstein J, Sullivan K, Yip R, De Onis M, Trowbridge F, Fajans P, Clugston G (1994) Issues in the assessment of nutritional status using anthropometry. Bull World Health Organ 72(2):273

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Group WMGRS (2006) WHO child growth standards based on length/height, weight and age. Acta Paediatr Suppl (Oslo, Norway: 1992) 450:76−85

  11. Lohman T, Roche A, Martorell R (1991) Anthropometric Standardization reference manual, Abridged edition. Human Kinetics Books, Champaign

  12. Control CoD (2007) National Health and Nutrition Examination Survey (NHANES) anthropometry procedures manual

  13. Cheng JC, Leung S, Chiu B, Tse P, Lee C, Chan A, Xia G, Leung A, Xu Y (1998) Can we predict body height from segmental bone length measurements? A study of 3,647 children. J Pediatr Orthop 18(3):387–393

    CAS  PubMed  Google Scholar 

  14. Yousafzai A, Filteau S, Wirz S, Cole T (2003) Comparison of armspan, arm length and tibia length as predictors of actual height of disabled and nondisabled children in Dharavi, Mumbai. Eur J Clin Nutr 57(10):1230–1234

    CAS  PubMed  Google Scholar 

  15. Scholtens S, Brunekreef B, Visscher TL, Smit HA, Kerkhof M, De Jongste JC, Gerritsen J, Wijga AH (2007) Reported versus measured body weight and height of 4-year-old children and the prevalence of overweight. Eur J Public Health 17(4):369–374

    PubMed  Google Scholar 

  16. Shannon B, Smiciklas-Wright H, Wang M (1991) Inaccuracies in self-reported weights and heights of a sample of sixth-grade children. J Am Diet Assoc 91(6):675–678

    CAS  PubMed  Google Scholar 

  17. Elgar FJ, Roberts C, Tudor-Smith C, Moore L (2005) Validity of self-reported height and weight and predictors of bias in adolescents. J Adolesc Health 37(5):371–375

    PubMed  Google Scholar 

  18. Wang Z, Patterson CM, Hills AP (2002) A comparison of self-reported and measured height, weight and BMI in Australian adolescents. Aust N Z J Public Health 26(5):473–478

    CAS  PubMed  Google Scholar 

  19. Tanner JM, Whitehouse RH (1975) Revised standards for triceps and subscapular skinfolds in British children. Arch Dis Child 50(2):142–145

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Cole T (2002) A chart to link child centiles of body mass index, weight and height. Eur J Clin Nutr 56(12)

  21. Waterlow J (1972) Classification and definition of protein-calorie malnutrition. Br Med J 3(5826):566

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Hoey HM, Tanner JM, Cox LA (1987) Clinical growth standards for Irish children. Acta Paediatr 76(s338):1–31

    Google Scholar 

  23. Health Service Executive, Ireland (2012) Training program for public health nurses and doctors in child health screening, surveillance and health promotion, Unit 6. http://www.hse.ie/eng/services/Publications/Children/Unit_6_Growth_Monitoring.pdf

  24. Styles M, Cole T, Dennis J, Preece M (2002) New cross sectional stature, weight, and head circumference references for Down’s syndrome in the UK and Republic of Ireland. Arch Dis Child 87(2):104–108

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Brooks J, Day S, Shavelle R, Strauss D (2011) Low weight, morbidity, and mortality in children with cerebral palsy: new clinical growth charts. Pediatrics 128(2):e299–e307

    PubMed  Google Scholar 

  26. Krick J, Murphy-Miller P, Zeger S, Weight E (1996) Pattern of growth in children with cerebral palsy. J Am Diet Assoc 96(7):680–685

    CAS  PubMed  Google Scholar 

  27. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85(9):660–667

    PubMed Central  PubMed  Google Scholar 

  28. Prentice AM, Jebb SA (2001) Beyond body mass index. Obes Rev 2(3):141–147

    CAS  PubMed  Google Scholar 

  29. Region WWP (2000) International association for the study of obesity. International obesity task force. The Asia-Pacific perspective: redefining obesity and its treatment. WHO Western Pacific Region, Geneva

  30. Freedman DS, Sherry B (2009) The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 124(Suppl 1):S23–S34

    PubMed  Google Scholar 

  31. Cole TJ, Freeman JV, Preece MA (1995) Body mass index reference curves for the UK, 1990. Arch Dis Child 73(1):25–29

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Rolland-Cachera MF, Cole TJ, Sempe M, Tichet J, Rossignol C, Charraud A (1991) Body mass index variations: centiles from birth to 87 years. Eur J Clin Nutr 45(1):13–21

    CAS  PubMed  Google Scholar 

  33. Lindgren G, Strandell A, Cole T, Healy M, Tanner J (1995) Swedish population reference standards for height, weight and body mass index attained at 6 to 16 years (girls) or 19 years (boys). Acta Paediatr 84(9):1019–1028

    CAS  PubMed  Google Scholar 

  34. Schaefer F, Georgi M, Wühl E, Schärer K (1998) Body mass index and percentage fat mass in healthy German schoolchildren and adolescents. Int J Obes Relat Metab Disord 22(5):461–469

  35. Nysom K, Mølgaard C, Hutchings B, Fleischer Michaelsen K (2001) Body mass index of 0 to 45-y-old Danes: reference values and comparison with published European reference values. Int J Obes Relat Metab Disord 25(2):177–184

  36. Michaelsen KF (2010) WHO growth standards—should they be implemented as national standards? J Pediatr Gastroenterol Nutr 51:S151–S152

    PubMed  Google Scholar 

  37. Rolland-Cachera MF (2011) Childhood obesity: current definitions and recommendations for their use. Int J Pediatr Obes 6(5–6):325–331

    PubMed  Google Scholar 

  38. Nutrition SACo (2007) Application of the WHO growth standards in the UK. Report prepared by the joint SACN/RCPCH expert group on growth standards

  39. Gläßer N, Zellner K, Kromeyer-Hauschild K (2011) Validity of body mass index and waist circumference to detect excess fat mass in children aged 7–14 years. Eur J Clin Nutr 65(2):151–159

    PubMed  Google Scholar 

  40. Lee S, Kuk JL, Davidson LE, Hudson R, Kilpatrick K, Graham TE, Ross R (2005) Exercise without weight loss is an effective strategy for obesity reduction in obese individuals with and without type 2 diabetes. J Appl Physiol 99(3):1220–1225

    PubMed  Google Scholar 

  41. Kipping RR, Jago R, Lawlor DA (2008) Obesity in children. Part 1: epidemiology, measurement, risk factors, and screening. BMJ: Br Med J (International Edition) 337:922–927

  42. McCarthy H, Jarrett K, Crawley H (2001) Original communications—the development of waist circumference percentiles in British children aged 5.0–16.9 y. Eur J Clin Nutr 55(10):902–907

    CAS  PubMed  Google Scholar 

  43. Freedman DS, Serdula MK, Srinivasan SR, Berenson GS (1999) Relation of circumferences and skinfold thicknesses to lipid and insulin concentrations in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr 69(2):308–317

    CAS  PubMed  Google Scholar 

  44. McCarthy HD, Ellis SM, Cole TJ (2003) Central overweight and obesity in British youth aged 11–16 years: cross sectional surveys of waist circumference. BMJ 326(7390):624

    PubMed Central  PubMed  Google Scholar 

  45. Maffeis C, Grezzani A, Pietrobelli A, Provera S, Tato L (2001) Does waist circumference predict fat gain in children? Int J Obes Relat Metab Disord 25(7):978–983

  46. Moreno L, Fleta J, Mur L, Rodriquez G, Sarria A, Bueno M (1999) Waist circumference values in Spanish children—gender related differences. Eur J Clin Nutr 53(6):429–433

    CAS  PubMed  Google Scholar 

  47. Taylor RW, Jones IE, Williams SM, Goulding A (2000) Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr 72(2):490–495

    CAS  PubMed  Google Scholar 

  48. Sardinha LB, Santos R, Vale S, e Silva MJC, Raimundo AM, Moreira H, Baptista F, Mota J (2012) Waist circumference percentiles for Portuguese children and adolescents aged 10 to 18 years. Eur J Pediatr 171(3):499–505

    PubMed  Google Scholar 

  49. McCarthy HD, Ashwell M (2006) A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message—‘keep your waist circumference to less than half your height’. Int J Obes 30(6):988–992

    CAS  Google Scholar 

  50. Mokha JS, Srinivasan SR, DasMahapatra P, Fernandez C, Chen W, Xu J, Berenson GS (2010) Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: the Bogalusa Heart Study. BMC Pediatr 10(1):73

    PubMed Central  PubMed  Google Scholar 

  51. Kahn HS, Imperatore G, Cheng YJ (2005) A population-based comparison of BMI percentiles and waist-to-height ratio for identifying cardiovascular risk in youth. J Pediatr 146(4):482–488

    PubMed  Google Scholar 

  52. Brambilla P, Bedogni G, Heo M, Pietrobelli A (2013) Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int J Obes 37(7):943–946

    CAS  Google Scholar 

  53. Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13(3):275–286

    CAS  PubMed  Google Scholar 

  54. Savva S, Tornaritis M, Savva M, Kourides Y, Panagi A, Silikiotou N, Georgiou C, Kafatos A (2000) Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord 24(11):1453–1458

  55. Hara M, Saitou E, Iwata F, Okada T, Harada K (2001) Waist-to-height ratio is the best predictor of cardiovascular disease risk factors in Japanese schoolchildren. J Atheroscler Thromb 9(3):127–132

    Google Scholar 

  56. Freedman DS, Kahn HS, Mei Z, Grummer-Strawn LM, Dietz WH, Srinivasan SR, Berenson GS (2007) Relation of body mass index and waist-to-height ratio to cardiovascular disease risk factors in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr 86(1):33–40

    CAS  PubMed  Google Scholar 

  57. Wing RR, Jeffery RW, Burton LR, Thorson C, Kuller LH, Folsom AR (1992) Change in waist–hip ratio with weight loss and its association with change in cardiovascular risk factors. Am J Clin Nutr 55(6):1086–1092

    CAS  PubMed  Google Scholar 

  58. De Ridder C, De Boer R, Seidell J, Nieuwenhoff C, Jeneson J, Bakker C, Zonderland M, Erich W (1992) Body fat distribution in pubertal girls quantified by magnetic resonance imaging. Int J Obes Relat Metab Disord 16(6):443–449

    PubMed  Google Scholar 

  59. Neovius M, Linne Y, Rossner S (2005) BMI, waist-circumference and waist–hip-ratio as diagnostic tests for fatness in adolescents. Int J Obes 29(2):163–169

    CAS  Google Scholar 

  60. Fredriks AM, van Buuren S, Fekkes M, Verloove-Vanhorick SP, Wit JM (2005) Are age references for waist circumference, hip circumference and waist–hip ratio in Dutch children useful in clinical practice? Eur J Pediatr 164(4):216–222

    PubMed  Google Scholar 

  61. Motil KJ (1998) Sensitive measures of nutritional status in children in hospital and in the field. Int J Cancer 78(S11):2–9

    Google Scholar 

  62. Brodie P, Moscrip M, HDCR V, Hutcheon M (1998) Body composition measurement: a review of hydrodensitometry, anthropometry, and impedance methods. Nutrition 14(3):296–310

    CAS  PubMed  Google Scholar 

  63. Oppliger RA, Clark RR, Kuta JM (1992) Efficacy of skinfold training clinics: a comparison between clinic trained and experienced testers. Res Q Exerc Sport 63(4):438–443

    CAS  PubMed  Google Scholar 

  64. Durnin J, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32(01):77–97

    CAS  PubMed  Google Scholar 

  65. Jackson AS, Pollock ML, Ward A (1979) Generalized equations for predicting body density of women. Med Sci Sports Exerc 12(3):175–181

    Google Scholar 

  66. Jackson AS, Pollock ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40(03):497–504

    CAS  PubMed  Google Scholar 

  67. Peterson MJ, Czerwinski SA, Siervogel RM (2003) Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am J Clin Nutr 77(5):1186–1191

    CAS  PubMed  Google Scholar 

  68. Reilly J, Wilson J, Durnin J (1995) Determination of body composition from skinfold thickness: a validation study. Arch Dis Child 73(4):305–310

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Brook C (1971) Determination of body composition of children from skinfold measurements. Arch Dis Child 46(246):182–184

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Deurenberg P, Pieters JJ, Hautvast JG (1990) The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br J Nutr 63(02):293–303

    CAS  PubMed  Google Scholar 

  71. Durnin J, Rahaman M (1967) The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr 21(03):681–689

    CAS  PubMed  Google Scholar 

  72. Johnston JL, Leong MS, Checkland E, Zuberbuhler PC, Conger PR, Quinney H (1988) Body fat assessed from body density and estimated from skinfold thickness in normal children and children with cystic fibrosis. Am J Clin Nutr 48(6):1362–1366

    CAS  PubMed  Google Scholar 

  73. Slaughter MH, Lohman T, Boileau R, Horswill C, Stillman R, Van Loan M, Bemben D (1988) Skinfold equations for estimation of body fatness in children and youth. Human Biol 60:709–723

  74. De Onis M, Habicht J-P (1996) Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr 64(4):650–658

    PubMed  Google Scholar 

  75. Semiz S, Sabir N (2007) Comparison of ultrasonographic and anthropometric methods to assess body fat in childhood obesity. Int J Obes 31(1):53–58

    CAS  Google Scholar 

  76. Wells JC (2001) A critique of the expression of paediatric body composition data. Arch Dis Child 85(1):67–72

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Oakley J, Parsons R, Whitelaw A (1977) Standards for skinfold thickness in British newborn infants. Arch Dis Child 52(4):287–290

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Bray GA, DeLany JP, Volaufova J, Harsha DW, Champagne C (2002) Prediction of body fat in 12-y-old African American and white children: evaluation of methods. Am J Clin Nutr 76(5):980–990

    CAS  PubMed  Google Scholar 

  79. Gutin B, Litaker M, Islam S, Manos T, Smith C, Treiber F (1996) Body-composition measurement in 9–11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis. Am J Clin Nutr 63(3):287–292

    CAS  PubMed  Google Scholar 

  80. Caprio S, Hyman LD, McCarthy S, Lange R, Bronson M, Tamborlane WV (1996) Fat distribution and cardiovascular risk factors in obese adolescent girls: importance of the intraabdominal fat depot. Am J Clin Nutr 64(1):12–17

    CAS  PubMed  Google Scholar 

  81. Geiss H, Parhofer K, Schwandt P (2001) Parameters of childhood obesity and their relationship to cardiovascular risk factors in healthy prepubescent children. Int J Obes Relat Metab Disord 25(6):830–837

  82. Steinberger J, Jacobs D, Raatz S, Moran A, Hong C, Sinaiko A (2005) Comparison of body fatness measurements by BMI and skinfolds vs dual energy X-ray absorptiometry and their relation to cardiovascular risk factors in adolescents. Int J Obes 29(11):1346–1352

    CAS  Google Scholar 

  83. Moreno LA, Fleta J, Mur L, Feja C, Sarría A, Bueno M (1997) Indices of body fat distribution in Spanish children aged 4.0 to 14.9 years. J Pediatr Gastroenterol Nutr 25(2):175–181

    CAS  PubMed  Google Scholar 

  84. Moreno L, Rodríguez G, Guillén J, Rabanaque M, León J, Ariño A (2002) Anthropometric measurements in both sides of the body in the assessment of nutritional status in prepubertal children. Eur J Clin Nutr 56(12):1208–1215

  85. Gurrici S, Hartriyanti Y, Hautvast J, Deurenberg P (1998) Relationship between body fat and body mass index: differences between Indonesians and Dutch Caucasians. Eur J Clin Nutr 52(11):779–783

    CAS  PubMed  Google Scholar 

  86. Moreno LA, Fleta J, Mur L, Sarría A, Bueno M (1998) Fat distribution in obese and nonobese children and adolescents. J Pediatr Gastroenterol Nutr 27(2):176–180

    CAS  PubMed  Google Scholar 

  87. Krebs NF, Himes JH, Jacobson D, Nicklas TA, Guilday P, Styne D (2007) Assessment of child and adolescent overweight and obesity. Pediatrics 120(Suppl 4):S193–S228

    PubMed  Google Scholar 

  88. Lukaski HC, Johnson PE, Bolonchuk W, Lykken G (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41(4):810–817

    CAS  PubMed  Google Scholar 

  89. Ellis KJ, Bell SJ, Chertow GM, Chumlea WC, Knox TA, Kotler DP, Lukaski HC, Schoeller DA (1999) Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference. Nutrition 15(11):874–880

    CAS  PubMed  Google Scholar 

  90. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior J-C, Pirlich M (2004) Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23(5):1226–1243

    PubMed  Google Scholar 

  91. Gallagher M, Walker K, O’Dea K (1998) The influence of a breakfast meal on the assessment of body composition using bioelectrical impedance. Eur J Clin Nutr 52(2):94–97

    CAS  PubMed  Google Scholar 

  92. de Beer M, Timmers T, Weijs PJ, Gemke RJ (2011) Validation of total body water analysis by bioelectrical impedance analysis with deuterium dilution in (pre) school children. e-SPEN: Eur e-J Clin Nutr Metab 6(5):e223–e226

    Google Scholar 

  93. Shafer KJ, Siders WA, Johnson LK, Lukaski HC (2009) Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition 25(1):25–32

    PubMed  Google Scholar 

  94. Parker L, Reilly JJ, Slater C, Wells JC, Pitsiladis Y (2003) Validity of six field and laboratory methods for measurement of body composition in boys. Obes Res 11(7):852–858

    PubMed  Google Scholar 

  95. Radley D, Cooke C, Fuller N, Oldroyd B, Truscott J, Coward W, Wright A, Gately P (2009) Validity of foot-to-foot bio-electrical impedance analysis body composition estimates in overweight and obese children. Int J Body Compos Res 7(1):15

    PubMed Central  PubMed  Google Scholar 

  96. Talma H, Chinapaw M, Bakker B, HiraSing R, Terwee C, Altenburg T (2013) Bioelectrical impedance analysis to estimate body composition in children and adolescents: a systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev 14(11):895–905

    CAS  PubMed  Google Scholar 

  97. Toombs RJ, Ducher G, Shepherd JA, Souza MJ (2012) The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity 20(1):30–39

    PubMed  Google Scholar 

  98. Sopher AB, Thornton JC, Wang J, Pierson RN, Heymsfield SB, Horlick M (2004) Measurement of percentage of body fat in 411 children and adolescents: a comparison of dual-energy X-ray absorptiometry with a four-compartment model. Pediatrics 113(5):1285–1290

    PubMed  Google Scholar 

  99. Wells JC, Haroun D, Williams JE, Wilson C, Darch T, Viner RM, Eaton S, Fewtrell MS (2010) Evaluation of DXA against the four-component model of body composition in obese children and adolescents aged 5–21 years. Int J Obes 34(4):649–655

    CAS  Google Scholar 

  100. Ward LC, Poston L, Godfrey KM, Koletzko B (2013) Assessing early growth and adiposity: report from an EarlyNutrition Academy Workshop. Ann Nutr Metab 63(1–2):120–130

    CAS  PubMed  Google Scholar 

  101. Gately P, Radley D, Cooke C, Carroll S, Oldroyd B, Truscott J, Coward W, Wright A (2003) Comparison of body composition methods in overweight and obese children. J Appl Physiol 95(5):2039–2046

    CAS  PubMed  Google Scholar 

  102. Harrington T, Thomas E, Modi N, Frost G, Coutts G, Bell J (2002) Fast and reproducible method for the direct quantitation of adipose tissue in newborn infants. Lipids 37(1):95–100

    CAS  PubMed  Google Scholar 

  103. Wells JC, Williams JE, Chomtho S, Darch T, Grijalva-Eternod C, Kennedy K, Haroun D, Wilson C, Cole TJ, Fewtrell MS (2012) Body-composition reference data for simple and reference techniques and a 4-component model: a new UK reference child. Am J Clin Nutr 96(6):1316–1326

    CAS  PubMed  Google Scholar 

  104. Atherton RR, Williams JE, Wells JC, Fewtrell MS (2013) Use of fat mass and fat free mass standard deviation scores obtained using simple measurement methods in healthy children and patients: comparison with the reference 4-component model. PLoS ONE 8(5):e62139

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Fields DA, Goran MI, McCrory MA (2002) Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr 75(3):453–467

    CAS  PubMed  Google Scholar 

  106. Hawkes CP, Hourihane JOB, Kenny LC, Irvine AD, Kiely M, Murray DM (2011) Gender-and gestational age-specific body fat percentage at birth. Pediatrics 128(3):e645–e651

    PubMed  Google Scholar 

  107. Fields DA, Allison DB (2012) Air-displacement plethysmography pediatric option in 2–6 years old using the four-compartment model as a criterion method. Obesity 20(8):1732–1737

    PubMed Central  PubMed  Google Scholar 

  108. Lukaski HC (1987) Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 46(4):537–556

    CAS  PubMed  Google Scholar 

  109. Claros G, Hull HR, Fields DA (2005) Comparison of air displacement plethysmography to hydrostatic weighing for estimating total body density in children. BMC Pediatr 5(1):37

    PubMed Central  PubMed  Google Scholar 

  110. Demerath E, Guo S, Chumlea W, Towne B, Roche A, Siervogel R (2002) Comparison of percent body fat estimates using air displacement plethysmography and hydrodensitometry in adults and children. Int J Obes Relat Metab Disord 26(3):389–397

  111. Holmes JC, Gibson AL, Cremades JG, Mier CM (2011) Body-density measurement in children: the BOD POD versus Hydrodensitometry. Int J Sport Nutr Exerc Metab 21(3):240–247

  112. Moon JR, Tobkin SE, Costa PB, Smalls M, Mieding WK, O’Kroy JA, Zoeller RF, Stout JR (2008) Validity of the BOD POD for assessing body composition in athletic high school boys. J Strength Cond Res 22(1):263–268

    PubMed  Google Scholar 

  113. Wells JC, Haroun D, Williams JE, Darch T, Eaton S, Viner R, Fewtrell M (2011) Evaluation of lean tissue density for use in air displacement plethysmography in obese children and adolescents. Eur J Clin Nutr 65(10):1094–1101

    CAS  PubMed  Google Scholar 

  114. Fields DA, Goran MI (2000) Body composition techniques and the four-compartment model in children. J Appl Physiol 89(2):613–620

    CAS  PubMed  Google Scholar 

  115. Wells J, Fuller N, Wright A, Fewtrell M, Cole T (2003) Evaluation of air-displacement plethysmography in children aged 5-7 years using a three-component model of body composition. Br J Nutr 90(03):699–707

    CAS  PubMed  Google Scholar 

  116. Haroun D, Wells J, Williams J, Fuller N, Fewtrell M, Lawson M (2005) Composition of the fat-free mass in obese and nonobese children: matched case–control analyses. Int J Obes 29(1):29–36

    CAS  Google Scholar 

  117. Jensky-Squires NE, Dieli-Conwright CM, Rossuello A, Erceg DN, McCauley S, Schroeder ET (2008) Validity and reliability of body composition analysers in children and adults. Br J Nutr 100(04):859–865

    CAS  PubMed  Google Scholar 

  118. Berger A (2002) How does it work? Magnetic resonance imaging. BMJ: Br Med J 324(7328):35

    Google Scholar 

  119. Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge M-P, Albu J, Heymsfield SB, Heshka S (2004) Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr 80(2):271–278

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Shen W, Punyanitya M, Wang Z, Gallagher D, Onge M-PS-, Albu J, Heymsfield SB, Heshka S (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97(6):2333–2338

    PubMed  Google Scholar 

  121. Shen W, Liu H, Punyanitya M, Chen J, Heymsfield SB (2005) Pediatric obesity phenotyping by magnetic resonance methods. Curr Opin Clin Nutr Metab Care 8(6):595

    PubMed Central  PubMed  Google Scholar 

  122. Shen W, Chen J, Gantz M, Velasquez G, Punyanitya M, Heymsfield SB (2012) A single MRI slice does not accurately predict visceral and subcutaneous adipose tissue changes during weight loss. Obesity 20(12):2458–2463

    PubMed Central  PubMed  Google Scholar 

  123. Uthaya S, Bell J, Modi N (2004) Adipose tissue magnetic resonance imaging in the newborn. Horm Res Paediatr 62(Suppl 3):143–148

    CAS  Google Scholar 

  124. Gale C, Jeffries S, Logan KM, Chappell KE, Uthaya SN, Modi N (2013) Avoiding sedation in research MRI and spectroscopy in infants: our approach, success rate and prevalence of incidental findings. Arch Dis Child Fetal Neonatal Ed 98(3):F267–F268

    PubMed  Google Scholar 

  125. Dumoulin CL, Rohling KW, Piel JE, Rossi CJ, Giaquinto RO, Watkins RD, Vigneron DB, Barkovich AJ, Newton N (2002) Magnetic resonance imaging compatible neonate incubator. Concepts Magn Reson 15(2):117–128

    Google Scholar 

  126. Samara A, Ventura E, Alfadda A, Goran M (2012) Use of MRI and CT for fat imaging in children and youth: what have we learned about obesity, fat distribution and metabolic disease risk? Obes Rev 13(8):723–732

    CAS  PubMed  Google Scholar 

  127. Zemel BS (2011) Quantitative computed tomography and computed tomography in children. Curr Osteoporos Reports 9(4):284–290

    Google Scholar 

  128. Mook-Kanamori DO, Holzhauer S, Hollestein LM, Durmus B, Manniesing R, Koek M, Boehm G, van der Beek EM, Hofman A, Witteman JC (2009) Abdominal fat in children measured by ultrasound and computed tomography. Ultrasound Med Biol 35(12):1938–1946

    CAS  PubMed  Google Scholar 

  129. Huang TTK, Johnson MS, Figueroa-Colon R, Dwyer JH, Goran MI (2001) Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children. Obes Res 9(5):283–289

    CAS  PubMed  Google Scholar 

  130. De Lucia Rolfe E, Modi N, Uthaya S, Hughes IA, Dunger DB, Acerini C, Stolk RP, Ong KK (2013) Ultrasound estimates of visceral and subcutaneous-abdominal adipose tissues in infancy. J Obes. doi:10.1155/2013/951954

  131. Wagner DR (2013) Ultrasound as a tool to assess body fat. J Obes. doi:10.1155/2013/280713

  132. Liem E, Rolfe EDL, L’abee C, Sauer P, Ong K, Stolk R (2009) Measuring abdominal adiposity in 6 to 7-year-old children. Eur J Clin Nutr 63(7):835–841

    CAS  PubMed  Google Scholar 

  133. Koot B, Westerhout R, Bohte A, Vinke S, Pels Rijcken T, Nederveen A, Caan M, Baan-Slootweg O, Merkus M, Stoker J (2013) Ultrasonography is not more reliable than anthropometry for assessing visceral fat in obese children. Pediatr Obes. doi:10.1111/j.2047-6310.2013.00193.x

  134. González-Agüero A, Olmedillas H, Gómez-Cabello A, Guillén-Ballester A, Casajús JA, Vicente-Rodríguez G (2013) Inter-methods agreement for the assessment of percentage of body fat between two laboratory methods in male adolescent cyclists. Nutricion Hospitalaria 28(4):1049–1052

Download references

Acknowledgments

Mary Horan is funded from the European Union’s Seventh Framework Programme (FP7/2007-2013), project EarlyNutrition under grant agreement no. 289346.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. McAuliffe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horan, M., Gibney, E., Molloy, E. et al. Methodologies to assess paediatric adiposity. Ir J Med Sci 184, 53–68 (2015). https://doi.org/10.1007/s11845-014-1124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-014-1124-1

Keywords

Navigation