Skip to main content
Log in

Urinary angiotensinogen as a potential biomarker of intrarenal renin–angiotensin system activity in Chinese chronic kidney disease patients

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Urinary angiotensinogen (AGT) mainly derives from the AGT produced in proximal tubular cells. Evidence exists that supports the correlation between urinary AGT and circulating AGT.

Aim

To investigate the role of urinary AGT as a potential biomarker of intrarenal renin–angiotensin system activity in Chinese chronic kidney disease (CKD) patients.

Methods

ELISA-based method used to quantify urinary AGT. Analyzed the relationship between urinary AGT and intrarenal angiotensin II (Ang II) activity in 128 CKD patients. ELISA was applied to measure the urinary and plasma renin activity, AGT, Ang II and aldosterone. Furthermore expression levels of intrarenal renin, AGT, Ang II and Ang II receptor were examined by immunohistochemistry staining (IHCS) in 72 CKD patients undergoing renal biopsy.

Results

The logarithmic transformation Log(urinary AGT/UCre) levels showed a normal distribution. Therefore, Log(urinary AGT/UCre) levels were used for the analyses. Average urinary AGT was 2.02 ± 0.55 ng/(mg Cr). Hypertension, urinary protein, urinary Ang II and urinary type IV collagen (Col IV) positively correlated with urinary AGT. Estimated glomerular filtration rate (eGFR), urinary sodium and serum AGT negatively correlated with urinary AGT. Multiple regression analysis indicated that low serum AGT, high urinary protein, urinary Ang II and urinary Col IV correlated significantly with high urinary AGT.

Conclusions

We observed positive correlation between urinary AGT and positive IHCS area of AGT, Ang II and Ang II type 1 receptor in renal tissue. These data suggest that urinary AGT might be a potential biomarker of intrarenal Ang II activity in CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kobori H, Ozawa Y, Suzaki Y et al (2006) Young Scholars Award Lecture: intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens 19:541–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Darby IA, Sernia C (1995) In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res 281:197–206

    Article  CAS  PubMed  Google Scholar 

  3. Lantelme P, Rohrwasser A, Gociman B et al (2002) Effects of dietary sodium and genetic background on angiotensinogen and Renin in mouse. Hypertension 39:1007–1014

    Article  CAS  PubMed  Google Scholar 

  4. Rohrwasser A, Morgan T, Dillon HF et al (1999) Elements of a paracrine tubular renin–angiotensin system along the entire nephron. Hypertension 34:1265–1274

    Article  CAS  PubMed  Google Scholar 

  5. Kobori H, Nishiyama A, Harrison-Bernard LM et al (2003) Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension 41:42–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kobori H, Harrison-Bernard LM, Navar LG (2002) Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int 61:579–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kobori H, Nishiyama A (2004) Effects of tempol on renal angiotensinogen production in Dahl salt-sensitive rats. Biochem Biophys Res Commun 315:746–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yamamoto T, Nakagawa T, Suzuki H et al (2007) Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol 18:1558–1565

    Article  CAS  PubMed  Google Scholar 

  9. Zhang XY, Ding XQ, Lv WL et al (2013) ELISA examining urinary angiotensinogen as a potential indicator of intrarenal renin–angiotensin system (RAS) activity: a clinical study of 128 chronic kidney disease patients. Mol Biol Rep 40(9):5817–5824

    Article  CAS  PubMed  Google Scholar 

  10. Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  CAS  PubMed  Google Scholar 

  11. Kuroczycka-Saniutycz E, Wasilewska A, Sulik A et al (2013) Urinary angiotensinogen as a marker of intrarenal angiotensin II activity in adolescents with primary hypertension. Pediatr Nephrol 28(7):1113–1119

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kobori H, Nangaku M, Navar LG et al (2007) The intrarenal renin angiotensin system from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287

    Article  CAS  PubMed  Google Scholar 

  13. Velez JC (2009) The importance of the intrarenal renin–angiotensin system. Nat Clin Pract Nephrol 5:89–100

    Article  CAS  PubMed  Google Scholar 

  14. Kobori H, Alper AB Jr, Shenava R et al (2009) Urinary angiotensinogen as a novel biomarker of the intrarenal renin–angiotensin system status in hypertensive patients. Hypertension 53:344–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Urushihara M, Kondo S, Kagami S et al (2010) Urinary angiotensinogen accurately reflects intrarenal renin–angiotensin system activity. Am J Nephrol 31:318–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nishiyama A, Konishi Y, Ohashi N et al (2011) Urinary angiotensinogen reflects the activity of intrarenal renin–angiotensin system in patients with IgA nephropathy. Nephrol Dial Transplant 26:170–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gould AB, Green D (1971) Kinetics of the human renin and human substrate reaction. Cardiovasc Res 5:86–89

    Article  CAS  PubMed  Google Scholar 

  18. Li XC, Navar LG, Shao Y et al (2007) Genetic deletion of AT1a receptors attenuates intracellular accumulation of ANG II in the kidney of AT1a receptor-deficient mice. Am J Physiol Renal Physiol 293:F586–F593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li XC, Carretero OA, Navar LG et al (2006) AT1 receptor-mediated accumulation of extracellular angiotensin II in proximal tubule cells: role of cytoskeleton microtubules and tyrosine phosphatases. Am J Physiol Renal Physiol 291:F375–F383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nakano D, Kobori H, Burford JL et al (2012) Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol 23(11):1847–1856

    Article  PubMed Central  PubMed  Google Scholar 

  21. Mezzano SA, Ruiz-Ortega M, Egido J (2001) Angiotensin II and renal fibrosis. Hypertension 38:635–638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Science and Technology Commission of Shanghai (08DZ1900602) and Key Subject Construction Project (Phase 3), the National ‘211 Project’, Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Xu, B. & Xu, C. Urinary angiotensinogen as a potential biomarker of intrarenal renin–angiotensin system activity in Chinese chronic kidney disease patients. Ir J Med Sci 184, 297–304 (2015). https://doi.org/10.1007/s11845-014-1103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-014-1103-6

Keywords

Navigation