Skip to main content
Log in

Controlling Surface Chemistry to Deconvolute Corrosion Benefits Derived from SMAT Processing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Grain refinement through surface plastic deformation processes such as surface mechanical attrition treatment has shown measureable benefits for mechanical properties, but the impact on corrosion behavior has been inconsistent. Many factors obfuscate the particular corrosion mechanisms at work, including grain size, but also texture, processing contamination, and surface roughness. Many studies attempting to link corrosion and grain size have not been able to decouple these effects. Here we introduce a preprocessing step to mitigate the surface contamination effects that have been a concern in previous corrosion studies on plastically deformed surfaces; this allows comparison of corrosion behavior across grain sizes while controlling for texture and surface roughness. Potentiodynamic polarization in aqueous NaCl solution suggests that different corrosion mechanisms are responsible for samples prepared with the preprocessing step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X.C. Liu, H.W. Zhang, and K. Lu, Science 342, 337 (2013).

    Article  Google Scholar 

  2. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Science 331, 1587 (2011).

    Article  Google Scholar 

  3. X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu, Mater. Res. Lett. 2, 185 (2014).

    Article  Google Scholar 

  4. S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi, and C. Demangel, Surf. Coat. Technol. 224, 82 (2013).

    Article  Google Scholar 

  5. T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, and M.H. Lee, Corros. Sci. 74, 332 (2013).

    Article  Google Scholar 

  6. K.D. Ralston and N. Birbilis, Corrosion 66, 075005 (2010).

    Article  Google Scholar 

  7. C. Op’t Hoog, N. Birbilis, and Y. Estrin, Adv. Eng. Mater. 10, 579 (2008).

    Article  Google Scholar 

  8. D.B. Bober, A. Khalajhedayati, M. Kumar, and T.J. Rupert, Metall. Mater. Trans. A 47, 1389 (2016).

    Article  Google Scholar 

  9. R. Zhang, R. Gupta, C. Davies, A. Hodge, M. Tort, K. Xia, and N. Birbilis, Corrosion 72, 160 (2015).

    Google Scholar 

  10. R.K. Gupta and N. Birbilis, Corros. Sci. 92, 1 (2015).

    Article  Google Scholar 

  11. M. Hoseini, A. Shahryari, S. Omanovic, and J.A. Szpunar, Corros. Sci. 51, 3064 (2009).

    Article  Google Scholar 

  12. P.J. Andersen, M.N. Bentancur, A.J. Moll, and M. Frary, J. Electrochem. Soc. 157, H120 (2010).

    Article  Google Scholar 

  13. M. Liu, D. Qiu, M.-C. Zhao, G. Song, and A. Atrens, Scr. Mater. 58, 421 (2008).

    Article  Google Scholar 

  14. P. Jiang, Q. Wei, Y.S. Hong, J. Lu, and X.L. Wu, Surf. Coat. Technol. 202, 583 (2007).

    Article  Google Scholar 

  15. D. Fabijanic, A. Taylor, K.D. Ralston, M.-X. Zhang, and N. Birbilis, Corrosion 69, 527 (2013).

    Article  Google Scholar 

  16. K.D. Ralston, D. Fabijanic, and N. Birbilis, Electrochim. Acta 56, 1729 (2011).

    Article  Google Scholar 

  17. L. Wen, Y. Wang, Y. Jin, and X. Ren, Corros. Eng. Sci. Technol. 50, 425 (2015).

    Article  Google Scholar 

  18. V. Guillaumin, P. Schmutz, and G.S. Frankel, J. Electrochem. Soc. 148, B163 (2001).

    Article  Google Scholar 

  19. L. Börner and J. Eckert, Mater. Sci. Eng. A 226, 541 (1997).

    Article  Google Scholar 

  20. Y.L. An, H.Y. Du, Y.H. Wei, N. Wang, L.F. Hou, and W.M. Lin, Mater. Des. 46, 627 (2013).

    Article  Google Scholar 

  21. W. Li, P. Liu, F. Ma, X. Liu, and Y. Rong, J. Alloys Compd. 509, 518 (2011).

    Article  Google Scholar 

  22. W. Li and D.Y. Li, Acta Mater. 54, 445 (2006).

    Article  Google Scholar 

  23. J.K. Yu, E.H. Han, L. Lu, X.J. Wei, and M. Leung, J. Mater. Sci. 40, 1019 (2005).

    Article  Google Scholar 

  24. F. Arjmand and A. Adriaens, Materials 5, 2439 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Jon-Erik Mogoyne (ORISE) for assistance with the surface profilometry, Micah Gallagher (Bowhead), and Jim Catalano for experimental support for sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Murdoch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murdoch, H.A., Labukas, J.P., Roberts, A.J. et al. Controlling Surface Chemistry to Deconvolute Corrosion Benefits Derived from SMAT Processing. JOM 69, 1170–1174 (2017). https://doi.org/10.1007/s11837-017-2352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2352-4

Keywords

Navigation