Skip to main content
Log in

Comparing EAM Potentials to Model Slip Transfer of Sequential Mixed Character Dislocations Across Two Symmetric Tilt Grain Boundaries in Ni

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Slip transfer via sequential pile-up dislocations across grain boundaries (GBs) plays an important role in plastic deformation in polycrystalline face-centered cubic (FCC) metals. In this work, large scale concurrent atomistic-continuum (CAC) method simulations are performed to address the slip transfer of mixed character dislocations across GBs in FCC Ni. Two symmetric tilt GBs, a Σ3{111} coherent twin boundary (CTB) and a Σ11{113} symmetric tilt GB (STGB), are investigated using five different fits to the embedded-atom method (EAM) interatomic potential to assess the variability of predicted dislocation-interface reaction. It is shown that for the Σ3 CTB, two of these potentials predict dislocation transmission while the other three predict dislocation absorption. In contrast, all five fits to the EAM potential predict that dislocations are absorbed by the Σ11 STGB. Simulation results are examined in terms of several slip transfer criteria in the literature, highlighting the complexity of dislocation/GB interactions and the significance of multiscale modeling of the slip transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.P. Hirth and J. Lothe, Theory of Dislocations (Hoboken: Wiley, 1982).

    MATH  Google Scholar 

  2. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, npj Comput. Mater. 2, 15016 (2016).

    Article  Google Scholar 

  3. J. Wang, JOM 67, 1515 (2015).

    Article  Google Scholar 

  4. D.E. Spearot and M.D. Sangid, Curr. Opin. Solid State Mater. Sci. 18, 188 (2014).

    Article  Google Scholar 

  5. J. Kacher and I.M. Robertson, Acta Mater. 60, 6657 (2012).

    Article  Google Scholar 

  6. J. Kacher, B.P. Eftink, B. Cui, and I.M. Robertson, Curr. Opin. Solid State Mater. Sci. 18, 227 (2014).

    Article  Google Scholar 

  7. D.L. McDowell, Int. J. Plast 26, 1280 (2010).

    Article  Google Scholar 

  8. B. Liu, D. Raabe, P. Eisenlohr, F. Roters, A. Arsenlis, and G. Hommes, Acta Mater. 59, 7125 (2011).

    Article  Google Scholar 

  9. M. Dewald and W. Curtin, Model. Simul. Mater. Sci. Eng. 19, 055002 (2011).

    Article  Google Scholar 

  10. M.P. Dewald and W.A. Curtin, Philos. Mag. 87, 4615 (2007).

    Article  Google Scholar 

  11. W. Yu and Z. Wang, Comput. Mater. Sci. 87, 150 (2014).

    Article  Google Scholar 

  12. Y. Chen, J. Chem. Phys. 130, 134706 (2009).

    Article  Google Scholar 

  13. L. Xiong, G. Tucker, D.L. McDowell, and Y. Chen, J. Mech. Phys. Solids 59, 160 (2011).

    Article  Google Scholar 

  14. S. Xu, R. Che, L. Xiong, Y. Chen, and D.L. McDowell, Int. J. Plast 72, 91 (2015).

    Article  Google Scholar 

  15. L. Xiong, S. Xu, D.L. McDowell, and Y. Chen, Int. J. Plast 65, 33 (2015).

    Article  Google Scholar 

  16. L. Xiong, J. Rigelesaiyin, X. Chen, S. Xu, D.L. McDowell, and Y. Chen, Acta Mater. 104, 143 (2016).

    Article  Google Scholar 

  17. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, Acta Mater. 122, 412 (2017).

    Article  Google Scholar 

  18. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, Scr. Mater. 123, 135 (2016).

    Article  Google Scholar 

  19. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, J. Mech. Phys. Solids 96, 460 (2016).

    Article  Google Scholar 

  20. M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson, Acta Mater. 59, 283 (2011).

    Article  Google Scholar 

  21. M. Chassagne, M. Legros, and D. Rodney, Acta Mater. 59, 1456 (2011).

    Article  Google Scholar 

  22. Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter, Scr. Mater. 54, 1163 (2006).

    Article  Google Scholar 

  23. Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn, Acta Mater. 56, 1126 (2008).

    Article  Google Scholar 

  24. W. Yu and Z. Wang, Philos. Mag. 94, 2224 (2014).

    Article  Google Scholar 

  25. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).

    Article  Google Scholar 

  26. J.E. Angelo, N.R. Moody, and M.I. Baskes, Model. Simul. Mater. Sci. Eng. 3, 289 (1995).

    Article  Google Scholar 

  27. S.M. Foiles and J.J. Hoyt, Acta Mater. 54, 3351 (2006).

    Article  Google Scholar 

  28. A.F. Voter and S.P. Chen, Mater. Res. Soc. Symp. Proc. 82, 175 (1987).

    Article  Google Scholar 

  29. X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Phys. Rev. B 69, 144113 (2004).

    Article  Google Scholar 

  30. J.B. Liu, D.D. Johnson, and A.V. Smirnov, Acta Mater. 53, 3601 (2005).

    Article  Google Scholar 

  31. S. Xu, L. Xiong, Q. Deng, and D.L. McDowell, Int. J. Solids Struct. 90, 144 (2016).

    Article  Google Scholar 

  32. S. Xu (Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, 2016)

  33. W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: An Object Oriented Approach to 3D Graphics (Clifton Park: Kitware, 2003).

    Google Scholar 

  34. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  35. A. Stukowski, Model. Simul. Mater. Sci. Eng. 20, 045021 (2012).

    Article  Google Scholar 

  36. A. Stukowski, V.V. Bulatov, and A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012).

    Article  Google Scholar 

  37. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.D. Peterson, R. Roskies, J.R. Scott, and N. Wilkins-Diehr, Comput. Sci. Eng. 16, 62 (2014).

    Article  Google Scholar 

  38. J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992).

    Article  Google Scholar 

  39. S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Acta Mater. 55, 6843 (2007).

    Article  Google Scholar 

  40. M.P. Dewald and W.A. Curtin, Model. Simul. Mater. Sci. Eng. 15, S193 (2007).

    Article  Google Scholar 

  41. B.J. Pestman, JThM de Hosson, V. Vitek, and F.W. Schapink, Scr. Metall. 23, 1431 (1989).

    Article  Google Scholar 

  42. L. Priester, S. Poulat, B. Décamps, and J. Thibault, Mat. Res. Soc. Symp. Proc. 652, 1 (2001).

    Google Scholar 

  43. L.C. Lim and R. Raj, Acta Metall. 33, 1577 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

These results are based upon work supported by the National Science Foundation as a collaborative effort between Georgia Tech (CMMI-1232878) and University of Florida (CMMI-1233113). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. LX acknowledges the support from the Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0006539. The work of LX was also supported in part by the National Science Foundation under Award Number CMMI-1536925. The authors thank Dr. Dengke Chen and Dr. Benjamin Szajewski for helpful discussions, Dr. Stephen M. Foiles for providing the tabulated Foiles-EAM potential file, and Dr. Alexander Stukowski for providing the dislocation extraction algorithm code. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. McDowell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Xiong, L., Chen, Y. et al. Comparing EAM Potentials to Model Slip Transfer of Sequential Mixed Character Dislocations Across Two Symmetric Tilt Grain Boundaries in Ni. JOM 69, 814–821 (2017). https://doi.org/10.1007/s11837-017-2302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2302-1

Keywords

Navigation