Skip to main content
Log in

Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting

  • Published:
JOM Aims and scope Submit manuscript

Abstract

AlSi10Mg cylinders produced by laser powder-bed fusion have somewhat different yield behavior for cylinders with XY orientation and Z orientation. Earlier yielding for Z-oriented samples is likely related to micro-residual stress, resulting from the difference in thermal expansion of the aluminum matrix and cellular silicon. Smaller tensile reduction in area of Z-oriented samples is related to tearing along the softer region at the boundaries of melt pools, where the silicon cell spacing is larger. Indentation measurements confirmed the lower hardness at the edges of melt pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.E. Dieter, Mechanical Metallurgy, 3rd ed. (New York: McGraw-Hill Book Company, 1988), pp. 322–324.

    Google Scholar 

  2. A.A. Benzerga, J. Besson, and A. Pineau, Acta Mater. 52, 4623 (2004). doi:10.1016/j.actamat.2004.06.020.

    Article  Google Scholar 

  3. A.A. Benzerga, J. Besson, and A. Pineau, Acta Mater. 52, 4639 (2004). doi:10.1016/j.actamat.2004.06.019.

    Article  Google Scholar 

  4. T.F. Morgeneyer, M.J. Starink, and I. Sinclair, Acta Mater. 56, 1671 (2008). doi:10.1016/j.actamat.2007.12.019.

    Article  Google Scholar 

  5. D. Steglich, W. Brocks, J. Heerens, and T. Pardoen, Eng. Fract. Mech. 75, 3692 (2008). doi:10.1016/j.engfracmech.2007.04.008.

    Article  Google Scholar 

  6. P.J.E. Forsyth and C.A. Stubbington, Met. Technol. 2, 158 (1975). doi:10.1179/030716975803277663.

    Article  Google Scholar 

  7. ASTM Committee F42, ISO/ASTM 52921-2013: Standard Terminology for Additive Manufacturing—Coordinate Systems and Test Methodologies, ASTM International (2013).

  8. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014). doi:10.1007/s11665-014-0958-z.

    Article  Google Scholar 

  9. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016). doi:10.1080/09506608.2015.1116649.

    Article  Google Scholar 

  10. J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 46, 151 (2016). doi:10.1146/annurev-matsci-070115-032024.

    Article  Google Scholar 

  11. B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015). doi:10.1016/j.actamat.2014.12.054.

    Article  Google Scholar 

  12. T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, and D. Schwarze, Metall. Mater. Trans. B 44, 794 (2013). doi:10.1007/s11663-013-9875-z.

    Article  Google Scholar 

  13. T. Vilaro, C. Colin, and J.D. Bartout, Metall. Mater. Trans. A 42, 3190 (2011). doi:10.1007/s11661-011-0731-y.

    Article  Google Scholar 

  14. A.M. Beese and B.E. Carroll, JOM 68, 724 (2016). doi:10.1007/s11837-015-1759-z.

    Article  Google Scholar 

  15. EOS GmbH—Electro Optical Systems, Material Data Sheet: EOS Aluminium AlSi10Mg (for EOS M280) (2016). http://www.eos.info/material-m. Accessed 11 October 2016.

  16. EOS GmbH—Electro Optical Systems, Material Data Sheets: EOS Aluminium AlSi10Mg (for EOS M270) (2014). http://www.eos.info/material-m. Accessed 17 November 2014.

  17. D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E.P. Ambrosio, and E. Atzeni, Materials 6, 856 (2013). doi:10.3390/ma6030856.

    Article  Google Scholar 

  18. I. Rosenthal, A. Stern, and N. Frage, Metallogr. Microstruct. Anal. 3, 448 (2014). doi:10.1007/s13632-014-0168-y.

    Article  Google Scholar 

  19. T.M. Mower and M.J. Long, Mater. Sci. Eng. A 651, 198 (2016). doi:10.1016/j.msea.2015.10.068.

    Article  Google Scholar 

  20. N. Read, W. Wang, K. Essa, and M.M. Attallah, Mater. Des. 65, 417 (2015). doi:10.1016/j.matdes.2014.09.044.

    Article  Google Scholar 

  21. L. Thijs, K. Kempen, J.P. Kruth, and J. Van Humbeeck, Acta Mater. 61, 1809 (2013). doi:10.1016/j.actamat.2012.11.052.

    Article  Google Scholar 

  22. M. Tang and P.C. Pistorius, Int. J. Fatigue 94, 192 (2016). doi:10.1016/j.ijfatigue.2016.06.002.

    Article  Google Scholar 

  23. S. Rao, Carnegie Mellon University, Pittsburgh, PA, unpublished research (2015).

  24. M. Tang, P.C. Pistorius, and J.L. Beuth, Materials Science and Technology Conference and Exhibition 2015, vol 1 (MS&T, 2015), pp. 129–136.

  25. ASTM Committee E28, ASTM E8/E8M-15a: Standard Test Methods for Tension Testing of Metallic Materials (2015). doi:10.1520/E0008_E0008M-15A.

  26. G.F. Vander Voort, Metallography: Principles and Practice (Metals Park, OH: ASM International, 1999), p. 509.

    Google Scholar 

  27. ASTM Committee E28, ASTM E646-16: Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials (2000). doi:10.1520/E0646-16.

  28. M. Tang, P.C. Pistorius, S. Narra, and J.L. Beuth, JOM 68, 960 (2016). doi:10.1007/s11837-015-1763-3.

    Article  Google Scholar 

  29. K. Kempen, L. Thijs, J. Van Humbeeck, and J.-P. Kruth, Mater. Sci. Technol. 31, 917 (2015). doi:10.1179/1743284714Y.0000000702.

    Article  Google Scholar 

  30. G. Purcek, O. Saray, and O. Kul, Met. Mater. Int. 16, 145 (2010). doi:10.1007/s12540-010-0145-1.

    Article  Google Scholar 

  31. ASTM Committee E04, ASTM Standard E112-13: Standard Test Methods for Determining Average Grain Size (2013). doi:10.1520/E0112-13.

  32. Y. Flom and R.J. Arsenault, JOM 38, 31 (1986). doi:10.1007/BF03258711.

    Article  Google Scholar 

  33. ASM Handbook Committee, ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Metals Park, OH: ASM International, 1990).

    Google Scholar 

  34. W.F. Gale and T.C. Totemeier, eds., Smithells Metals Reference Book, 8th ed. (Boston: Elsevier Butterworth-Heinemann, 2004).

    Google Scholar 

Download references

Acknowledgement

This material is based on research sponsored by Air Force Research Laboratory under Agreement Number FA8650-12-2-7230 and by the Commonwealth of Pennsylvania, acting through the Department of Community and Economic Development, under Contract Number C000053981. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Any opinions, views, findings, recommendations, and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory, the U.S. Government, the Commonwealth of Pennsylvania, Carnegie Mellon University, or Lehigh University. The authors acknowledge use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785. The assistance and support of Alcoa is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrus Christiaan Pistorius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Pistorius, P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting. JOM 69, 516–522 (2017). https://doi.org/10.1007/s11837-016-2230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2230-5

Keywords

Navigation