Skip to main content
Log in

Development of a High-Temperature Tensile Tester for Micromechanical Characterization of Materials Supporting Meso-Scale ICME Models

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A high-temperature tensile tester (HTTT) has been established for the evaluation of micro-mechanical properties of materials at the meso-scale. Metals and ceramics can now be tested at temperatures and strain rates between room temperature and 1200°C and 10−5 s−1 to 10−1 s−1, respectively. The samples are heated in a compact clam shell furnace and strain is measured directly in the sample gage with digital image correlation. The HTTT extracts representative mechanical properties, as evidenced by the similarity in the evaluated micro-tensile properties of a solid solution-strengthened Ni-base superalloy Ni-625 with that of the bulk. The effectiveness of the HTTT has also been demonstrated in evaluating the tensile and stress relaxation/short-term creep properties of a polycrystalline Ni-base superalloy René 88DT. The versatility in carrying out tensile, short-term creep, bend tests, and fracture toughness measurements makes the HTTT a robust experimental tool for small-scale and scale-specific benchmarking of multi-scale ICME models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.F. Horstmeyer, Computational Materials Engineering (ICME) for Metals: Using Multiscale Modelling to Invigorate Engineering Design with Science (Hoboken, NJ: Wiley, 2012).

    Book  Google Scholar 

  2. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58, 1152 (2010).

    Article  Google Scholar 

  3. D.S. Gianola and C. Eberl, JOM 61, 24 (2009).

    Article  Google Scholar 

  4. K.J. Hemker and W.N. Sharpe Jr., Annu. Rev. Mater. Res. 37, 93 (2007).

    Article  Google Scholar 

  5. W.N. Sharpe Jr., K.T. Turner, and R.L. Edwards, Exp. Mech. 39, 162 (1999).

    Article  Google Scholar 

  6. W.N. Sharpe Jr., Exp. Mech. 43, 228 (2003).

    MathSciNet  Google Scholar 

  7. D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker, Acta Mater. 51, 2205 (2003).

    Article  Google Scholar 

  8. A. Pandey and K.J. Hemker, JOM 67, 1617 (2015).

    Article  Google Scholar 

  9. A. Pandey, V.K. Tolpygo, and K.J. Hemker, JOM 65, 542 (2013).

    Article  Google Scholar 

  10. M.Z. Alam, S.V. Kamat, V. Jayaram, and D.K. Das, Acta Mater. 61, 1093 (2013).

    Article  Google Scholar 

  11. M.Z. Alam, S.V. Kamat, V. Jayaram, and D.K. Das, Acta Mater. 67, 278 (2014).

    Article  Google Scholar 

  12. M.P. Echlin, W. Lenthe, and T.M. Pollock, Integr. Mater. Manuf. Innov. 3, 21 (2014).

    Article  Google Scholar 

  13. S. Keshavarz, S. Ghosh, A.C.E. Reid, and S.A. Langer, Acta Mater. 114, 106 (2016).

    Article  Google Scholar 

  14. S. Keshavarz and S. Ghosh, Acta Mater. 61, 6549 (2013).

    Article  Google Scholar 

  15. S. Keshavarz and S. Ghosh, Int. J. Solids Struct. 55, 17 (2015).

    Article  Google Scholar 

  16. D. Eastman, Z. Alam, P.A. Shade, M.D. Uchic, W.C. Lenthe, T.M. Pollock, and K.J. Hemker, Superalloys 2016, ed. M.C. Hardy, E.S. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin (The Minerals, Metals & Materials Society; Hoboken, NJ: Wiley, 2016), p. 813.

  17. J.C. Stinville, M.P. Echlin, D. Texier, F. Bridier, P. Bocher, and T.M. Pollock, Exp. Mech. 56, 197 (2016).

    Article  Google Scholar 

  18. P. Ghosh and A.H. Chokshi, Metall. Mater. Trans. A 46, 5671 (2015).

    Article  Google Scholar 

  19. C. Eberl and S. Bundschuh, http://in.mathworks.com/matlabcentral/fileexchange/12413-digital-image-correlation-and-tracking. Accessed 10 June 2016.

  20. Haynes 625 alloy, Principal features, http://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/625-brochure.pdf?sfvrsn=4. Accessed 10 June 2016.

  21. S.T. Wlodek, M. Kelly and D.A. Alden, Superalloys 1996, in ed. R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford (The Minerals, Metals & Materials Society, Warrendale, PA, 1996), p. 129.

  22. V. Shankar, M. Valsan, K.B.S. Rao, and S.L. Mannan, Metall. Mater. Trans. A 35, 3129 (2004).

    Article  Google Scholar 

  23. D.L. Anton, in Ni 3 Al in Ni Base Superalloys: Crystal Structures of Intermetallic Compounds Vol 3, ed. J.H. Westbrook, R.L. Fleischer (Wiley, Sussex, 2000), p. 1.

  24. G.E. Dieter, in Creep and Stress Rupture in: D. Bacon (Adapted), Mechanical Metallurgy (Mc-Graw Hill Book Company, Singapore, 1988), pp. 432.

  25. W. Tu and T.M. Pollock, in Superalloys 2008, ed. by R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A Woodard (The Minerals, Metals & Materials Society, Warrendale, PA, 2008), p. 395.

Download references

Acknowledgements

This work has been supported through Grant No. 90058536 at Johns Hopkins University awarded by the Office of Naval Research, ONR. The authors thank Suman Dasgupta, Binwei Zhang, Stephen Ryan and Simon Lockyer-Bratton for their technical input, and undergraduate researchers Ben Long and Kevin Peters for helping with the experiments. Special thanks to Drs. Jeff Swab and Jim McCauley of ARL for providing us with the Y-TZP material and insights on the machining of ceramics. We also acknowledge A. Loghin, D. Konitzer, J. Williams and J. Marte of GE Global Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafir Alam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, Z., Eastman, D., Jo, M. et al. Development of a High-Temperature Tensile Tester for Micromechanical Characterization of Materials Supporting Meso-Scale ICME Models. JOM 68, 2754–2760 (2016). https://doi.org/10.1007/s11837-016-2100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2100-1

Keywords

Navigation