Skip to main content
Log in

Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A high-conductivity solid electrolyte, La2Zr2O7 (LZO) added to Li6.4La3Zr1.4Ta0.6O12 (LLZTO), was prepared via conventional solid-state reactions and sintered at 1100°C for 10 h, which is tens of Celsius degrees lower than the typical sintering temperature for LLZTO. The addition of LZO did not bring in any impurities. LZO acted as a sintering aid to densify the LLZTO from a relative density of 77% up to 90%, which was comparable to that of pure LLZTO sintered at 1200°C. The 6 wt.% LZO–LLZTO samples sintered at 1100°C and 1200°C exhibited a room-temperature conductivity of 1.92 × 10−4 S/cm and 5.84 × 10−4 S/cm, respectively, which were higher than that of pure LLZTO samples. Glass-like phases observed at grain boundaries in LZO–LLZTO ceramics indicated that LZO promoted the formation of the glass-like phases binding together LLZTO grains and thus leading to enhanced density and conductivity of LLZTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Tarascon, Philos. Trans. Ser. A Math. Phys. Eng. Sci. 368, 3227 (2010).

    Article  Google Scholar 

  2. S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka, J. Power Sources 265, 40 (2014).

    Article  Google Scholar 

  3. Q. Wang, Z. Wen, J. Jin, J. Guo, X. Huang, J. Yang, and C. Chen, Chem. Commun. 52, 1637 (2016).

    Article  Google Scholar 

  4. Q. Wang, J. Jin, X. Wu, G. Ma, J. Yang, and Z. Wen, Phys. Chem. Chem. Phys. 16, 21225 (2014).

    Article  Google Scholar 

  5. Q. Wang, Z. Wen, J. Yang, J. Jin, X. Huang, W. Xiangwei, and J. Han, J. Power Sources 306, 347 (2016).

    Article  Google Scholar 

  6. F.J. Li, H. Kitaura, and H.S. Zhou, Energy Environ. Sci. 6, 2302 (2013).

    Article  Google Scholar 

  7. G. Adachi, N. Imanaka, and H. Aono, Adv. Mater. 8, 127 (1996).

    Article  Google Scholar 

  8. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, and K. Kawamoto, et al., Nat. Mater. 10, 682 (2011).

    Article  Google Scholar 

  9. R. Kanno and M. Murayama, J. Electrochem. Soc. 148, A742 (2001).

    Article  Google Scholar 

  10. C.R. Mariappan, M. Gellert, C. Yada, F. Rosciano, and B. Roling, Electrochem. Commun. 14, 25 (2012).

    Article  Google Scholar 

  11. X. Xiaoxiong, Z. Wen, W. Xiangwei, X. Yang, and G. Zhonghua, J. Am. Ceram. Soc. 90, 2802 (2007).

    Article  Google Scholar 

  12. X.X. Xu and Z.Y. Wen, J. Inorg. Mater. 20, 21 (2005).

    Google Scholar 

  13. S. Stramare, V. Thangadurai, and W. Weppner, Chem. Mater. 15, 3974 (2003).

    Article  Google Scholar 

  14. V. Thangadurai, S. Narayanan, and D. Pinzaru, Chem. Soc. Rev. 43, 4714 (2014).

    Article  Google Scholar 

  15. R. Murugan, V. Thangadurai, and W. Weppner, Angew. Chem. Int. Ed. Engl. 46, 7778 (2007).

    Article  Google Scholar 

  16. Y.T. Li, J.T. Han, C.A. Wang, H. Xie, and J.B. Goodenough, J. Mater. Chem. 22, 15357 (2012).

    Article  Google Scholar 

  17. I. Kokal, M. Somer, P.H.L. Notten, and H.T. Hintzen, Solid State Ion. 185, 42 (2011).

    Article  Google Scholar 

  18. Y. Seungho, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, and D.J. Siegel, Chem. Mater. 28, 197 (2016).

    Article  Google Scholar 

  19. H. El Shinawi and J. Janek, J. Power Sources 225, 13 (2013).

    Article  Google Scholar 

  20. N. Janani, C. Deviannapoorani, L. Dhivya, and R. Murugan, RSC Adv. 4, 51228 (2014).

    Article  Google Scholar 

  21. R.P. Rao, W. Gu, N. Sharma, V.K. Peterson, M. Avdeev, and S. Adams, Chem. Mater. 27, 2903 (2015).

    Article  Google Scholar 

  22. V. Thangadurai, R.A. Huggins, and W. Weppner, J. Power Sources 108, 64 (2002).

    Article  Google Scholar 

  23. O.L. Andreev, M.I. Pantyukhina, B.D. Antonov, and N.N. Batalov, Russ. J. Electrochem. 36, 1335 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 51432010, 51372262 and fundamental research project from the Science and Technology Commission of Shanghai Municipality No. 14JC1493000. We thank Prof. B.V.R. Chowdari (School of Materials Science and Engineering, Nanyang Technological University) for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyin Wen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Shen, C., Rui, K. et al. Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet. JOM 68, 2593–2600 (2016). https://doi.org/10.1007/s11837-016-2065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2065-0

Keywords

Navigation