Skip to main content
Log in

Thermal Stability Comparison of Nanocrystalline Fe-Based Binary Alloy Pairs

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest; yet, they have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dominated systems. Although traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloys can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdoch et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10 at.% Mg) with a predicted non-NC stable alloy (Fe-10 at.% Cu) using the same processing and characterization methodologies. Results show improved thermal stability of the Fe-Mg alloy in comparison with the Fe-Cu, and thermally-evolved microstructures that are consistent with those predicted by Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.R. Agnew, B.R. Elliott, C.J. Youngdahl, K.J. Hemker, and J.R. Weertman, Mater. Sci. Eng. A 285, 391 (2000).

    Article  Google Scholar 

  2. D.H. Jeong, F. Gonzalez, G. Palumbo, K.T. Aust, and U. Erb, Scr. Mater. 44, 493 (2001).

    Article  Google Scholar 

  3. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  Google Scholar 

  4. Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Luc, and K. Lu, Mater. Sci. Eng. A 352, 144 (2003).

    Article  Google Scholar 

  5. R. Mishra, B. Basu, and R. Balasubramaniam, Mater. Sci. Eng. A 373, 370 (2004).

    Article  Google Scholar 

  6. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  7. C.C. Koch, J. Mater. Sci. 42, 1403 (2007).

    Article  Google Scholar 

  8. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).

    Article  Google Scholar 

  9. B.L. Boyce and H.A. Padilla, Metall. Mater. Trans. A 42A, 1793 (2011).

    Article  Google Scholar 

  10. K. Lücke and K. Detert, Acta Metall. 5, 628 (1957).

    Article  Google Scholar 

  11. J.W. Cahn, Acta Metall. 10, 789 (1962).

    Article  Google Scholar 

  12. E. Nes, N. Ryum, and O. Hunderi, Acta Metall. 33, 11 (1985).

    Article  Google Scholar 

  13. M. Hillert, Acta Metall. 36, 3177 (1988).

    Article  Google Scholar 

  14. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust, Scr. Metall. Mater. 25, 2711 (1991).

    Article  Google Scholar 

  15. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, and D.T. Wu, Acta Mater. 47, 2143 (1999).

    Article  Google Scholar 

  16. C.E. Krill, H. Ehrhardt, and R. Birringer, Z. Fur. Metall. 96, 1134 (2005).

    Article  Google Scholar 

  17. J.R. Trelewicz and C.A. Schuh, Phys. Rev. B 79, 094112 (2009).

    Article  Google Scholar 

  18. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).

    Article  Google Scholar 

  19. H.A. Murdoch and C.A. Schuh, Acta Mater. 61, 2121 (2013).

    Article  Google Scholar 

  20. M. Saber, H. Kotan, C.C. Koch, and R.O. Scattergood, J. Appl. Phys. 113, 1 (2013).

    Article  Google Scholar 

  21. K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu, Computat. Mater. Sci. 84, 255 (2014).

    Article  Google Scholar 

  22. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer, Acta Mater. 62, 1 (2014).

    Article  Google Scholar 

  23. F. Abdeljawad and S.M. Foiles, Acta Mater. 101, 159 (2015).

    Article  Google Scholar 

  24. M.J. Rosen and J.T. Kunjappu, Surfactants and Interfacial Phenomena (New York: Wiley, 2012).

    Book  Google Scholar 

  25. D. McLean, Grain Boundaries in Metals (London: Oxford University Press, 1957).

    Google Scholar 

  26. M. Guttmann, Metall. Trans. A 8, 1383 (1977).

    Article  Google Scholar 

  27. J. Weissmüller, Nanostruct. Mater. 3, 261 (1993).

    Article  Google Scholar 

  28. R. Kirchheim, Acta Mater. 50, 413 (2002).

    Article  Google Scholar 

  29. H. Baker, Asm Handbook, Alloy Phase Diagrams, Vol. 03 (Materials Park: ASM International, 1992).

    Google Scholar 

  30. J.A. Knapp and D.M. Follstaedt, J. Mater. Res. 19, 218 (2004).

    Article  Google Scholar 

  31. Astm E112-13, Standard Test Methods for Determining Average Grain Size (West Conshohocken: ASTM International, 2013).

    Google Scholar 

  32. T. Chookajorn and C.A. Schuh, Phys. Rev. B 89, 064102 (2014).

    Article  Google Scholar 

  33. T. Chookajorn and C.A. Schuh, Acta Mater. 73, 128 (2014).

    Article  Google Scholar 

  34. T. Chookajorn, M. Park, and C.A. Schuh, J. Mater. Res. 30, 151 (2015).

    Article  Google Scholar 

  35. J. Eckert, J. Holzer, and W. Johnson, J. Appl. Phys. 73, 131 (1993).

    Article  Google Scholar 

  36. Z. Chen, N. Kioussis, and N. Ghoniem, Phys. Rev. B 80, 184104 (2009).

    Article  Google Scholar 

  37. Y.N. Gornostyrev, I.N. Kar’kin, and L.E. Kar’kina, Phys. Solid State 53, 1388 (2011).

    Article  Google Scholar 

  38. S.N. Mathaudhu and B.L. Boyce, JOM 67, 2785 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. F. Abdeljawad and S. Foiles for useful discussions. All experiments (BGC, KH, MTM, and BLB) were fully supported by the DOE Office of Basic Energy Sciences, Materials Science and Engineering. CAS and TC acknowledge the support of the U.S. Army Research Office at MIT, under grant W911NF-14-1-0539. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Clark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, B.G., Hattar, K., Marshall, M.T. et al. Thermal Stability Comparison of Nanocrystalline Fe-Based Binary Alloy Pairs. JOM 68, 1625–1633 (2016). https://doi.org/10.1007/s11837-016-1868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1868-3

Keywords

Navigation