Skip to main content
Log in

Phase Transformations in Au-Fe Particles and Thin Films: Size Effects at the Micro- and Nano-scales

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thin Au-Fe bilayers (3–30 nm in total thickness) were deposited on sapphire substrates. Annealing in a temperature range of 600–1100°C resulted in solid-state dewetting and the subsequent formation of micro- and nano-particles. Electron microscopy, atomic force microscopy and in situ x-ray diffraction were employed to systematically study two phase transformations in the Au-Fe system: (1) precipitation of α-Fe from supersaturated Au-Fe solid-solution particles; and (2) αγ transformation in Fe and Au-Fe thin films and particles. In both cases, the transformations proceeded differently than in the bulk already for sub-micron (100 nm to 1 μm) particles. These results were explained by the low defect concentration in the particles, nucleation difficulties, slow diffusivity on facets, and Au segregation. A “reverse size effect” was observed in thin Fe films, and discussed in terms of nucleation model taking into account the small size of the parent phase. The main conclusion is that phase transformations in the particles and in the bulk proceed differently, not only for nano-sized particles as was customarily believed but also for particles of sub-micrometer size. We suggest that this size effect is governed by two different length scales: the inter-defect spacing (upper limit) and the bulk critical nucleus size (lower limit).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Cahn, Acta Metall. 28, 1333 (1980).

    Article  Google Scholar 

  2. F.D. Fischer, T. Waitz, D. Vollath, and N.K. Simha, Prog. Mater Sci. 53, 481 (2008).

    Article  Google Scholar 

  3. A.S. Shirinyan and M. Wautelet, Nanotechnology 15, 1720 (2004).

    Article  Google Scholar 

  4. J. Diao, K. Gall, and M.L. Dunn, Nat. Mater. 2, 656 (2003).

    Article  Google Scholar 

  5. Y. Mishin, M. Asta, and J. Li, Acta Mater. 58, 1117 (2010).

    Article  Google Scholar 

  6. N. Braidy, G.R. Purdy, and G.A. Botton, Acta Mater. 56, 5972 (2008).

    Article  Google Scholar 

  7. B. Kim, J. Tersoff, C.Y. Wen, M. Reuter, E. Stach, and F. Ross, Phys. Rev. Lett. 103, 155701 (2009).

    Article  Google Scholar 

  8. W. Jesser, R. Shneck, and W. Gile, Phys. Rev. B 69, 144121 (2004).

    Article  Google Scholar 

  9. G. Baldinozzi, D. Simeone, D. Gosset, and M. Dutheil, Phys. Rev. Lett. 90, 216103 (2003).

    Article  Google Scholar 

  10. O. Kitakami, H. Sato, Y. Shimada, F. Sato, and M. Tanaka, Phys. Rev. B 56, 13849 (1997).

    Article  Google Scholar 

  11. S.H. Tolbert and A.P. Alivisatos, Science 265, 373 (1994).

    Article  Google Scholar 

  12. Q. Meng, N. Zhou, Y. Rong, S. Chen, T.Y. Hsu, and Xu Zuyao, Acta Mater. 50, 4563 (2002).

    Article  Google Scholar 

  13. L. Pasquini, E. Callini, E. Piscopiello, A. Montone, M.V. Antisari, and E. Bonetti, Appl. Phys. Lett. 94, 041918 (2009).

    Article  Google Scholar 

  14. R.E. Cech and D. Turnbull, Trans. AIME 206, 124 (1956).

    Google Scholar 

  15. H. Sadan and W.D. Kaplan, J. Mater. Sci. 41, 5099 (2006).

    Article  Google Scholar 

  16. H. Okamoto, T.B. Massalski, L.J. Swartzendruber, and P.A. Beck, Bull. Alloy Phase Diagr 5, 592 (1984).

    Article  Google Scholar 

  17. L. Vitos, A.V. Ruban, H.L. Skriver, and J. Kollár, Surf. Sci. 411, 186 (1998).

    Article  Google Scholar 

  18. D. Favez, J.D. Wagnière, and M. Rappaz, Acta Mater. 58, 1016 (2010).

    Article  Google Scholar 

  19. C.C. Chou, H. Chen, and C.M. Wayman, Mater. Charact. 26, 93 (1991).

    Article  Google Scholar 

  20. D. Amram and E. Rabkin, Acta Mater. 61, 4113 (2013).

    Article  Google Scholar 

  21. D. Amram, L. Klinger, and E. Rabkin, Acta Mater. 60, 3047 (2012).

    Article  Google Scholar 

  22. C.V. Thompson, Annu. Rev. Mater. Res. 42, 399 (2012).

    Article  Google Scholar 

  23. D. Amram, L. Klinger, and E. Rabkin, Acta Mater. 61, 5130 (2013).

    Article  Google Scholar 

  24. D. Amram, O. Kovalenko, and E. Rabkin, Acta Mater. 98, 343 (2015).

    Article  Google Scholar 

  25. W.C. Carter, A.R. Roosen, J.W. Cahn, and J.E. Taylor, Acta Metall. Mater. 43, 4309 (1995).

    Article  Google Scholar 

  26. D. Amram, Y. Amouyal, and E. Rabkin, Acta Mater. 102, 342 (2016).

    Article  Google Scholar 

  27. D. Amram, D. Barlam, E. Rabkin, and R.Z. Shneck, in preparation (2016).

  28. Q. Meng, Y. Rong, and T. Hsu, Phys. Rev. B 65, 174118 (2002).

    Article  Google Scholar 

  29. A.S. Shirinyan, Y.S. Bilogorodskyy, G. Wilde, and J.W.P. Schmelzer, J. Phys.: Condens. Matter 23, 245301 (2011).

    Google Scholar 

  30. R.G. Aspden, J.A. Berger, and H.E. Trout, Acta Metall. 16, 1027 (1968).

    Article  Google Scholar 

  31. C. Cayron, Acta Mater. 96, 189 (2015).

    Article  Google Scholar 

  32. D. Amram, O. Kovalenko, and E. Rabkin, in preparation (2016).

  33. W.W. Mullins and G.S. Rohrer, J. Am. Ceram. Soc. 83, 214 (2000).

    Article  Google Scholar 

  34. T. Epicier, C. Esnouf, M.A. Smith, and D. Pope, Philos. Mag. Lett. 65, 299 (1992).

    Article  Google Scholar 

  35. D. Amram and E. Rabkin, ACS Nano 8, 10687 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dor Amram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amram, D., Rabkin, E. Phase Transformations in Au-Fe Particles and Thin Films: Size Effects at the Micro- and Nano-scales. JOM 68, 1335–1342 (2016). https://doi.org/10.1007/s11837-016-1847-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1847-8

Keywords

Navigation