Skip to main content

Advertisement

Log in

A Review of Similar and Dissimilar Micro-joining of Nitinol

  • Published:
JOM Aims and scope Submit manuscript

Abstract

NiTinol belongs to a class of smart materials which has a wide range of applications in the field of automotive, aerospace, biomedical, robotics, etc., owing to the growing trend in miniaturization of components. Micro-joining is becoming one of the important and familiar processes in the fabrication of miniaturized components. Recently, effective micro-joining of thin sheets has been gaining a lot of interest among researchers. In this article, the research and progress in micro-joining of NiTinol to itself and other metals are reviewed at different aspects. To date, laser welding, tungsten inert gas welding, and resistance welding have been used to a large extent in investigating the weldability of NiTinol alloys. Some important welding parameters used in micro joining by various researchers and their effects on weld qualities are detailed in this review. Metallurgical aspects, mechanical properties and corrosion aspects of micro-joined NiTinol sheets/wires are discussed. The aim of this report is to review the recent progress in micro-joining of NiTinol and to provide a basis for follow-on research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.J. Buehler, J.V. Gilfrich, and R.C. Wiley, Appl. Phys. 34, 1475 (1963).

    Article  Google Scholar 

  2. G. Kauffman and I. Mayo, Chem. Educ. 2, 1 (1997).

    Google Scholar 

  3. T.W. Duerig and A.R. Pelton, Ti-Ni Shape Memory Alloys. Materials Properties Handbook, Titanium Alloys (Materials Park, OH: American Society for Metals, 1994), pp. 1035–1048.

    Google Scholar 

  4. R. Pfeifer, W. Muller, C. Hurschler, S. Kaierle, V. Wesling, and H. Haferkamp, Proceedings of the 1st CIRP Conference on Biomanufacturing (2013), pp. 253–258.

  5. Dynalloy Inc., Technical Characteristics of Flexinol Actuator Wires (Costa Mesa: Dynalloy Inc., 2007), p. 12.

    Google Scholar 

  6. R. Neugebauer, A. Bucht, K. Pagel, and J. Jung, 76450J-J (2010).

  7. D. Stoeckel and F. Tinschert, SAE Technical Paper Series, SAE (1991).

  8. M.A. Cleveland, U.S. Patent 7367738B2. The Boeing Co (2008).

  9. B. Carpenter and J. Lyons, EO-1 Technology Validation Report, NASA/GSFC (2001), p. 8.

  10. B. Huettl and C. Willey, 14th AIAA/USU Small Satellite Conference. North Logan (2000).

  11. C.F.L. Long and G.A.P. Vezain, US Patents 5829253, Societe Nationale Industrielle et Aerospatiale, Paris Cedex (1998).

  12. B.K. Lortz and A. Tang, US Patents 5722709. Hughes Electronics, California (1998).

  13. P. Fujun, J. Xin-Xiang, H. Yan-Ru, and A. Ng. Aerospace Conference on App of Shape Memory Alloy Actuators in Active Shape Control of Inflatable Space Structures (IEEE, 2005), pp. 1–10.

  14. J.H. Roh, J.H. Han, and I. Lee. Smart Structures and Integrated Systems (SPIE, 2005), pp. 460–471.

  15. O.J. Godard, M.Z. Lagoudas, and D.C. Lagoudas, Conference on Smart Structures and Materials, International Society for Optics and Photonics (2003), pp. 545–558.

  16. G.A. Landis and P.P. Jenkins, Conference Record of the Twenty-Sixth Photovoltaic Specialists Conference (IEEE, 1997), pp. 865–869.

  17. C. Tuna, J.H. Solomon, D.L. Jones, and M.J.Z. Hartmann, IEEE International Conference on Acoustics, Speech and Signal Processing (2012), pp. 2537–2540.

  18. J. Mohd Jani, M. Leary, A. Subic, and M.A. Gibson, Mater. Des. 56, 1078 (2014).

    Article  Google Scholar 

  19. G.F. Andreasen, US Patents 4037324. University of Iowa Research Foundation, A61G 7/00 ed. (1977), p. 8.

  20. G.F. Andreasen and T.B. Hilleman, J. Am. Dental Assoc. 82, 1373 (1971).

    Article  Google Scholar 

  21. G.R. Mirshekari, A. Saatchi, A. Kermanpur, and S.K. Sadrnezhaad, Opt. Laser Technol. 54, 151 (2013).

    Article  Google Scholar 

  22. C.W. Chan, H.C. Man, and T.M. Yue, Metall. Mater. Trans. A. 42A, 2264 (2011).

    Article  Google Scholar 

  23. T. Shinoda, T. Tsuchiya, and H. Takahashi, Trans. Jpn. Weld Soc. 22, 30 (1991).

    Google Scholar 

  24. S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, and A. Yamamoto, Sci. Technol. Weld Jt. 15, 124 (2010).

    Article  Google Scholar 

  25. A. Ikai, K. Kimura, and H. Tobush, J. Intell. Mater. Syst. Struct. 7, 646 (1996).

    Article  Google Scholar 

  26. A. Ika, J. Intell. Mater. Syst. Struct. 7, 646 (1996).

    Article  Google Scholar 

  27. K.C. VanderEij, H. Fostervoll, Z.K. Sallom, and O.M. Akselsen, Proceedings of the ASM Materials Solutions Conference (Pittsburgh, 2003), pp. 125–129.

  28. G. Wang, Proceedings, International Conference on Shape Memory and Superelasticity Technologies, (Pacific Grove, CA, 1997), p. 131.

  29. P. Hall, Proceedings, International Conference on Shape Memory and SuperelasticityTechnologies (Pacific Grove, CA, 2000), p. 105.

  30. J. Vannod, M. Bornert, J.E. Bidaux, L. Bataillard, A. Karimi, and J. Drezet, Acta Mater. 59, 6538 (2011).

    Article  Google Scholar 

  31. M. Seki, H. Yamamoto, M. Nojiri, K. Uenishi, and K.F. Kobayashi, J. Jpn. Inst. Met. 64, 632 (2000).

    Google Scholar 

  32. X.M. Qiu, G. LiM, D.Q. Sun, and W.H. Liu, J. Mater. Process Technol. 176, 8 (2006).

    Article  Google Scholar 

  33. H. Gugel, A. Schuermann, and W. Teisen, Mater. Sci. Eng. A. 481, 668 (2008).

    Article  Google Scholar 

  34. A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi, Mater. Sci. Eng. A. 813, 273 (1999).

    Google Scholar 

  35. Y.H. Hsu, S.K. Wang, and C. Chen, Metall. Mater. Trans. A. 32, 569 (2001).

    Article  Google Scholar 

  36. X.J. Yan, D.Z. Yang, and X.P. Liu, Mater. Charact. 58, 623 (2007).

    Article  Google Scholar 

  37. L. Alberty Vieira, F.M. Braz Fernandes, R.M. Miranda, R.J.C. Silva, L. Quintino, and A. Cuesta, Mater. Sci. Eng. A. 528, 5560 (2011).

    Article  Google Scholar 

  38. A. Hirose, M. Uchihara, T. Araki, K. Honda, and M. Kondoh, Jpn. Inst. Met. 54, 262 (1990).

    Google Scholar 

  39. T. Haas and A. Schuessler. Proceedings, International Conference on Shape Memory and Superelasticity Technologies (Antwerp, 1999), p. 103.

  40. M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Prog. Mater. Sci. 57, 911 (2012).

    Article  Google Scholar 

  41. P. Sevilla, F. Martorell, C. Libenson, J.A. Planell, and F.J. Gill, J. Mater. Sci. 19, 525 (2008).

    Google Scholar 

  42. B. Tam, M.I. Khan, and Y. Zhou, Miner. Met. Mater. Soc. ASM Int. 42A, 2166 (2011).

    Google Scholar 

  43. B. Tam, A. Pequegnat, M.I. Khan, and Y. Zhou, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 2969 (2012).

    Article  Google Scholar 

  44. P. Schlobmacher, T. Hass, and A. Schübler, Proceedings of the 1st International Conference on Shape Memory and Superelastic Technlogy, ed. A. Pelton, D. Hodgson, S. Russel, and T. Duerig, Pacific Grove (1994), p. 137.

  45. Y.G. Song, W.S. Li, L. Li, and Y.F. Zheng, Mater. Lett. 62, 2325 (2008).

    Article  Google Scholar 

  46. W. Gong, Y. Chen, and L. Ke, Trans. Nonferrous Met. Soc. China 21, 2044 (2011).

    Article  Google Scholar 

  47. P. Schlossmacher, T. Haas, and A. Schussler, J. Phys. IV 7, 251 (1997).

    Google Scholar 

  48. P. Schlossmacher, T. Haas, and A. Schussler, Proceedings of the First International Conference on Shape Memory and Superelastic Technologies (Pacific Grove, California, 1994), p. 85.

  49. L.A. Vieira, F.M.B. Fernandes, R.M. Miranda, R.J.C. Silva, L. Quintino, A. Cuesta, and J.L. Ocaña, Mater. Sci. Eng. A 528, 5560 (2011).

    Article  Google Scholar 

  50. C.W. Chan and H.C. Man, Opt. Lasers Eng. 49, 121 (2011).

    Article  Google Scholar 

  51. X.J. Yan, D.Z. Yang, and X.P. Liu, Mater. Charact. 58, 262 (2007).

    Article  Google Scholar 

  52. C.W. Chan, H.C. Man, and T.M. Yue, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42, 2264 (2011).

    Article  Google Scholar 

  53. X. Zhao, W. Wang, L. Chen, F. Liu, J. Huang, and H. Zhang, Mater. Lett. 62, 1551 (2008).

    Article  Google Scholar 

  54. X. Zhao, L. Lan, H. Sun, J. Huang, and H. Zhang, Mater. Lett. 64, 628 (2010).

    Article  Google Scholar 

  55. H. Gugel, A. Schuermann, and W. Theisen, Mater. Sci. Eng. A. 482, 668 (2008).

    Article  Google Scholar 

  56. H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, and W.Q. Wang, Mater. Des. 39, 285 (2012).

    Article  Google Scholar 

  57. H. Li, D. Sun, X. Cai, P. Dong, and X. Gu, Opt. Laser Technol. 45, 453 (2013).

    Article  Google Scholar 

  58. H. Li, D. Sun, X. Gu, P. Dong, and Z. Lv, Mater. Des. 50, 342 (2013).

    Article  Google Scholar 

  59. Y.T. Hsu, Y.R. Wang, S.K. Wu, and C. Chen, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32, 569 (2001).

    Article  Google Scholar 

  60. X.J. Yan, D.Z. Yang, and L.M. Liu, Chin. J. Nonferrous Met. 15, 19 (2005).

    Google Scholar 

  61. Y. Ogata, M. Takatugu, T. Kunimasa, K. Uenishi, and K.F. Kobayashi, Mater. Trans. 45, 1070 (2004).

    Article  Google Scholar 

  62. M.G. Li, D.Q. Sun, X.M. Qiu, D.X. Sun, and S.Q. Yin, Mater. Sci. Eng. A. 424, 17 (2006).

    Article  Google Scholar 

  63. V. Delobelle, P. Delobelle, Y. Liu, D. Favier, and H. Louche, J. Mater. Process. Technol. 213, 1139 (2013).

    Article  Google Scholar 

  64. B. London, J. Fino, A. Pelton, C. Fuller, and M. Mahoney, Miner. Met. Mater. Soc. 67 (2005).

  65. P. Schlobmacher, T. Haas, and A. Schubler, Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies (Pacific Grove, California, 1997), p. 137.

  66. A. Schubler, T. Haas, and P. Schlobmacher, Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies (Pacific Grove, California, 1997), p. 50.

  67. M.I. Khan and Y. Zhou, Mater. Sci. Eng. A. 527, 6235 (2010).

    Article  Google Scholar 

  68. P. Schloßmacher, T. Hass, and A. Schüßler. Proceedings of the International Conference on Shape Memory and Superelastic Technologies (California, 1994).

  69. A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi, Mater. Sci. Eng. A Struct. Mater. 813, 273 (1999).

    Google Scholar 

  70. X.J. Yan, D.Z. Yang, and X.P. Liu, Mater. Charact. 58, 623 (2007).

    Article  Google Scholar 

  71. R. Venugopalan and C. Trépanier, Minim. Invasive Ther. Allied Technol. 9, 67 (2000).

    Article  Google Scholar 

  72. M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Biomaterials 23, 2887 (2002).

    Article  Google Scholar 

  73. C. Trépanier, M. Tabrizian, L.H. Yahia, L. Bilodeau, and D.L. Piron, J. Biomed. Mater. Res. 43, 433 (1998).

    Article  Google Scholar 

  74. H.H. Huang, J. Biomed. Mater. Res. 66, 829 (2003).

    Article  Google Scholar 

  75. O. Cissé, O. Savadoga, M. Wu, and L.H. Yahia, J. Biomed. Mater. Res. 61, 339 (2002).

    Article  Google Scholar 

  76. ASTM Standard G61-86, Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron, nickel, or cobalt-based alloys, ASTM standards, ASTM, (Philadelphia, PA, 2009).

  77. F.J. Gil, D. Rodriguez, J.A. Planell, M. Cortada, L.L. Giner, and S. Costa, J. Mater. Sci 11, 287 (2000).

    Google Scholar 

  78. R. Baboian, Electrochemical techniques for predicting galvanic corrosion. In Galvanic and pitting corrosion-field and Laboratory studies. ASTM STP 576, ed. R. Baboian, R. France, J. Roew and J.F. Rynewicz, (Philadelphia: American Society for Testing and Materials 6, 2004).

  79. F. Mansfeld, R.L. Meyers, and G. Lauer, Instrumentation for corrosion studies in low conductivity media, Technical Report Rockwell International (2003).

  80. S.A. Shabalovskaya, Bio-Med. Mater. Eng. 12, 69 (2002).

    Google Scholar 

  81. A.G. Veldhuizen, D.J. Wever, J. De Vrles, H.J. Busscher, D.R.A. Uges, and J.R. Van Horn, Biomaterials. 19, 761 (1998).

    Article  Google Scholar 

  82. G. Rondelli, Biomaterials 17, 2008 (1996).

    Article  Google Scholar 

  83. G. Rondelli and B. Vicentini, Biomaterials 20, 785 (1999).

    Article  Google Scholar 

  84. G. Rondelli and B. Vicentini, J. Biomed. Mater. Res. 51, 47 (2000).

    Article  Google Scholar 

  85. X. Yan, D. Yang, and X. Liu, Trans. Nonferrous Met. Soc. China 16, 572 (2006).

    Article  Google Scholar 

  86. H.H. Huang, J. Biomed. Mater. 66, 829 (2003).

    Article  Google Scholar 

  87. O. Cisse, O. Savadoga, M. Wu, and L. Yahia, J. Biomed. Mater. Res. 61, 339 (2002).

    Article  Google Scholar 

  88. M. Es-Sow, M. Es-Souni, and H. Fischer-Brandies, Biomaterials. 23, 2887 (2002).

    Article  Google Scholar 

  89. M. Tomita, K. Yokoyama, and J. Sakai, Corros. Sci. 50, 2061 (2008).

    Article  Google Scholar 

  90. C.W. Chan, H.C. Man, and T.M. Yue, Corros. Sci. 57, 260 (2012).

    Article  Google Scholar 

  91. C. Zhang, X. Sun, X. Hou, H. Li, and D. Sun, Int. J. Med. Sci. 10, 1068 (2013).

    Article  Google Scholar 

  92. C. Zhang, S. Zhao, X. Sun, D. Sun, and X. Sun, Corros. Sci. 82, 404 (2014).

    Article  Google Scholar 

  93. C.W. Chan, H.C. Man, and T.M. Yue, Corros. Sci. 56, 158 (2012).

    Article  Google Scholar 

  94. C.W. Chan and H.C. Man, Opt. Laser Eng. 49, 121 (2011).

    Article  Google Scholar 

  95. M. Mirjalili, M. Momeni, N. Ebrahimi, and M.H. Moayed, Mater. Sci. Eng. C. 33, 2084 (2013).

    Article  Google Scholar 

  96. ASTM E384. Standard test method for micro indentation hardness of materials.

  97. H.M. Li, D.Q. Sun, W.Q. Wang, and Y.W. Han, Mater. Sci. Technol. 17, 143 (2009).

    Google Scholar 

  98. A. Falvo, F.M. Furgiuele, and C. Maletta, Mater. Sci. Eng. A. 412, 235 (2005).

    Article  Google Scholar 

  99. G.R. Mirshekari, A. Saatchi, A. Kermanpur, and S.K. Sadrnezhaad, Opt. Laser Technol. 54, 151 (2013).

    Article  Google Scholar 

  100. A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi, Mater. Sci. Eng. A. 273–275, 813 (1999).

    Article  Google Scholar 

  101. C.W. Chan, H.C. Man, and T.M. Yue, Metall. Mater. Trans. A. 412, 235 (2005).

    Google Scholar 

  102. T.G. Santos, F.B. Fernandes, G. Bernardo, and R.M. Miranda, Int. J. Adv. Manuf. Technol. 66, 787 (2013).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported through SCSP/TSP/PWD (Project Ref. No. NITT/DEAN- ID/SCSP-TSP/RP/01) scheme funded by the Department of Higher Education, Ministry of Human Resource Development (MHRD), Government of India and the authors of this paper would like to thank Department of Higher Education, Ministry of Human Resource Development MHRD, and Government of India for sponsoring this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sathiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepan Bharathi Kannan, T., Ramesh, T. & Sathiya, P. A Review of Similar and Dissimilar Micro-joining of Nitinol. JOM 68, 1227–1245 (2016). https://doi.org/10.1007/s11837-016-1836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1836-y

Keywords

Navigation