Skip to main content
Log in

Hydrometallurgical Separation of Niobium and Tantalum: A Fundamental Approach

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A mixture of pure Ta2O5 and Nb2O5 was dissolved using two different fluxes, namely NH4F·HF and Na2HPO4/NaH2PO4·H2O. Selective precipitation and ion exchange were used as separation techniques. Selective precipitation using p-phenylediamine in a fluoride matrix resulted in the isolation of 73(3)% tantalum accompanied by 23(5)% niobium. A separation factor of 11(4) was obtained. A single solvent extraction step using methyl-isobutyl ketone at a 4 M H2SO4 yielded excellent Ta and Nb separation in the fluoride solution with 80% of the Ta and only 2% Nb recovered in the organic layer. A two-step extraction recovered 100% Ta at 0.5–4 M H2SO4 with a separation factor of ~2000. A study of the extraction mechanism indicated that the stability of the protonated compounds such as H2TaF7/H2NbOF5 is in the extraction and separation determining steps in this process. A K′ (double de-protonated constant) of approximately 0.2 was calculated for H2TaF7. Only 91.7% Nb and 73.4% Ta were recovered from anion separation using strong Amberlite resin and 96.1% Nb and 52.3% using the weak Dowex Marathon resin from fluoride dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Bayot and M. Devillers, Coord. Chem. Rev. 250, 2610 (2006).

    Article  Google Scholar 

  2. D.R. Sadoway and S.N. Flengas, Metall. Trans. B. 11B, 57 (1980).

    Article  Google Scholar 

  3. Roskill Information, The Economics of Tantalum, 9th ed. (London: Roskill Information Services Ltd., 2005).

    Google Scholar 

  4. W.A. Serjak, Technical Promotion Officer Tantalum-Niobium (International Study Center, 40 Rue Washington, 1050 Brussels, Belgium).

  5. K.M. Mackay, R.A. Mackay, and W. Henderson, Introduction to Modern Inorganic Chemistry, 5th ed. (Cheltenham: Stanley Thornes (Publishers) Ltd., 1996), p. 261.

    Google Scholar 

  6. M.H. Cockbill, Analyst 87, 611 (1962).

    Article  Google Scholar 

  7. W. Kock and P. Paschen, JOM 41, 33 (1989).

    Article  Google Scholar 

  8. G.W. Sears and L. Quill, J. Am. Chem. Soc. 47, 922 (1925).

    Article  Google Scholar 

  9. J.E.S. Uria, C.G. Ortiz, A.M. Garcia, and A. Sanz-Medel, Mikrochim. Acta [Wien] 2, 195 (1987).

    Article  Google Scholar 

  10. M.E. Pennington, J. Am. Chem. Soc. 18, 38 (1896).

    Article  Google Scholar 

  11. X. Wang, S. Zheng, H. Xu, and Y. Zhang, Hydrometallurgy 98, 219 (2009).

    Article  Google Scholar 

  12. P.L. Mahanta, V.V. Hanuman, R. Radhamani, and P.K. Srivastava, At. Spectrosc. 29, 172 (2008).

    Google Scholar 

  13. T.A. Theron, M. Nete, J.A. Venter, W. Purcell, and J.T. Nel, S. Afr. J. Chem. 64, 173 (2011).

    Google Scholar 

  14. M. Nete, W. Purcell, E. Snyders, and J.T. Nel, S. Afr. J. Chem. 63, 130 (2010).

    Google Scholar 

  15. O.N. Grebneva, I.V. Kubrakova, T.F. Kudinova, and N.M. Kuz’min, Spectrochem. Acta Part B. 52, 1151 (1997).

    Article  Google Scholar 

  16. G.E.M. Hall and J.C. Pelchat, J. Anal. At. Spectrom. 5, 339 (1990).

    Article  Google Scholar 

  17. A. Angulyansky, The Chemistry of Tantalum and Niobium Fluoride Compounds (Amsterdam: Elsevier, 2004), p. 263.

    Google Scholar 

  18. W.S. Arlesheim and F.K. Benningen, Process for separating niobium and tantalum from materials containing these metals, U.S. Patent US 2842424 (1958).

  19. G. Choi, J. Lim, N.R. Munirathnam, and I. Kim, Met. Mater. Int. 15, 385 (2009).

    Article  Google Scholar 

  20. A. Agulyansky, L. Agulyansky, F. Viktor, and V.F. Travkin, Chem. Eng. Process. 43, 1231 (2004).

    Article  Google Scholar 

  21. M.J. Kabangu and P.L. Crouse, Hydrometallurgy 129–130, 151 (2012).

    Article  Google Scholar 

  22. M. Nete, Separation and purification of niobium and tantalum from synthetic and natural compounds, PhD Thesis, University of the Free State, Bloemfontein, South Africa, 2013.

  23. E.G. Polyakov and L.P. Polyakova, Metallurgist 47, 33 (2003).

    Article  Google Scholar 

  24. M. Nete, W. Purcell, and J.T. Nel, Hydrometallurgy 149, 31 (2014).

    Article  Google Scholar 

  25. M. Nete, W. Purcell, and J.T. Nel, Evaluation of ammonium bifluoride dissolution on different tantalum and niobium mineral samples, Precious Metals 2013 Conference, (Cape Town, South Africa, 2013), p. 21.

  26. M. Nete, W. Purcell, and J.T. Nel, J. Fluorine Chem. 165, 20 (2014).

    Article  Google Scholar 

  27. D.G. Christian, Analytical Chemistry, 5th ed. (New York: Wiley, 1994), p. 484.

    Google Scholar 

  28. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed. (New York: Wiley, 1988), p. 703.

    Google Scholar 

  29. R. Radhamani, P.L. Mahanta, P. Murugesan, and G. Chakrapani, J. Radioanal. Nucl. Chem. 285, 287 (2010).

    Article  Google Scholar 

  30. R.B. Hahn, J. Am. Chem. Soc. 73, 5091 (1951).

    Article  Google Scholar 

  31. M.L.C.P. da Silva, G.L.J.P. da Silva, and D.N. VillelaFilho, Mater. Res. 5, 71 (2002).

    Article  Google Scholar 

  32. C.K. Jörgensen, Absorption Spectra and Chemical Bonding in Complexes (New York: Pergamon Press LTD, 1962), p. 107.

    Book  Google Scholar 

  33. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed. (New York: Wiley, 1970), pp. 151–225.

    Google Scholar 

  34. Y.A. Buslaev, E.G. Ii’in, V.D. Kopanev, and O.G. Gavrish, Inorg. Anal. Chem. 6, 1055 (1971).

    Google Scholar 

  35. R. Gross and W. Kaim, Inorg. Chem. 26, 3596 (1987).

    Article  Google Scholar 

  36. J.W. Sibert, Wurster’s crown ligands, U.S. Patent US 6441164 B2 (2002).

  37. MicroMath, Scientist Handbook, MicroMath, Salt Lake, USA; 1986–2004.

  38. V. Langer, L. Smrčok, and M. Boča, Acta Cryst. E62, i91 (2006).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Fund of the University of the Free State, the National Research Foundation (NRF) of South Africa, the South Africa Nuclear Energy Corporation SOC Limited (Necsa) and the New Metals Development Network (NMDN) of the Advanced Metals Initiative (AMI) of the Department of Science and Technology of South Africa (DST) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motlalepula Nete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nete, M., Purcell, W. & Nel, J.T. Hydrometallurgical Separation of Niobium and Tantalum: A Fundamental Approach. JOM 68, 556–566 (2016). https://doi.org/10.1007/s11837-015-1711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1711-2

Keywords

Navigation