Skip to main content
Log in

Anisotropic Size-Dependent Plasticity in Face-Centered Cubic Micropillars Under Torsion

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Three-dimensional dislocation dynamics (DD) simulations are performed to investigate the size-dependent plasticity in submicron face-centered cubic (FCC) micropillars under torsion. By using a previously implemented surface nucleation algorithm within DD, we show that the plastic behavior of FCC micropillars under torsion is strongly affected by the crystallographic orientation: In 〈110〉 oriented submicron pillars, coaxial dislocations nucleate and pile up near the axis, leading to homogeneous deformation along the pillars. In contrast, in 〈100〉 and 〈111〉 oriented pillars, heterogeneous plasticity has been observed due to the formation of localized dislocation arrays. As a result of the existence of a coaxial slip plane in 〈110〉 oriented pillars, stronger size-dependent plasticity is observed in this case compared with those in other orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53, 1821 (2005).

    Article  Google Scholar 

  2. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).

    Article  Google Scholar 

  3. W.D. Nix, J.R. Greer, G. Feng, and E.T. Lilleodden, Thin Solid Films 515, 3152 (2007).

    Article  Google Scholar 

  4. J.R. Greer and W.D. Nix, Phys. Rev. B 73, 245410 (2004).

    Article  Google Scholar 

  5. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580 (2008).

    Article  Google Scholar 

  6. K.S. Ng and A.H.W. Ngan, Acta Mater. 56, 1712 (2008).

    Article  Google Scholar 

  7. D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy, Acta Mater. 53, 4065 (2005).

    Article  Google Scholar 

  8. D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic, Science 312, 1188 (2006).

    Article  Google Scholar 

  9. C.A. Volkert and E.T. Lilleodden, Philos. Mag. 86, 5567 (2006).

    Article  Google Scholar 

  10. D. Kiener, C. Motz, T. Schoberl, M. Jenko, and G. Dehm, Adv. Eng. Mater. 8, 1119 (2006).

    Article  Google Scholar 

  11. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Acta Metall. Mater. 42, 475 (1994).

    Article  Google Scholar 

  12. D.J. Dunstan, B. Ehrler, R. Bossis, S. Joly, K.M.Y. P’ng, and A.J. Bushby, Phys. Rev. Lett. 103, 155501 (2009).

    Article  Google Scholar 

  13. D.B. Liu, Y.M. He, D.J. Dunstan, B. Zhang, Z.P. Gan, P. Hu, and H.M. Ding, Int. J. Plasticity 41, 30 (2013).

    Article  Google Scholar 

  14. D.B. Liu, Y.M. He, D.J. Dunstan, B. Zhang, Z.P. Gan, P. Hu, and H.M. Ding, Phys. Rev. Lett. 110, 244301 (2013).

  15. J.S. Stolken and A.G. Evans, Acta Mater. 46, 5109 (1998).

    Article  Google Scholar 

  16. M.A. Haque and M.T.A. Saif, Acta Mater. 51, 3053 (2003).

    Article  Google Scholar 

  17. C. Motz, D. Weygand, J. Senger, and P. Gumbsch, Acta Mater. 56, 1942 (2008).

    Article  Google Scholar 

  18. Q. Ma and D.R. Clarke, J. Mater. Res. 10, 853 (1995).

    Article  Google Scholar 

  19. W.D. Nix, Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  20. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and Y.V. Milman, Acta Metall. Mater. 41, 2855 (1993).

    Article  Google Scholar 

  21. D. Kiener and A.M. Minor, Nano Lett. 11, 3816 (2011).

    Article  Google Scholar 

  22. S.H. Oh, M. Legros, D. Kiener, and G. Dehm, Nat. Mater. 8, 95 (2009).

    Article  Google Scholar 

  23. Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, and A.M. Minor, Nat. Mater. 7, 115 (2008).

    Article  Google Scholar 

  24. G. Feng, A.S. Budiman, W.D. Nix, N. Tamura, and J.R. Patel, J. Appl. Phys. 104, 043501 (2008).

    Article  Google Scholar 

  25. A.S. Budiman, W.D. Nix, N. Tamura, B.C. Valek, K. Gadre, J. Maiz, R. Spolenak, and J.R. Patel, Appl. Phys. Lett. 88, 233515 (2006).

    Article  Google Scholar 

  26. M.F. Ashby, Philos. Mag. 21, 399 (1970).

    Article  Google Scholar 

  27. A. Arsenlis and D.M. Parks, Acta Mater. 47, 1597 (1999).

    Article  Google Scholar 

  28. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov, Model Simul. Mater. Sci. 15, 553 (2007).

    Article  Google Scholar 

  29. B. Devincre and L.P. Kubin, Mater. Sci. Eng. A 234, 8 (1997).

    Article  Google Scholar 

  30. J.A. El-Awady, M. Wen, and N.M. Ghoniem, J. Mech. Phys. Solids 57, 32 (2009).

    Article  MATH  Google Scholar 

  31. H.D. Espinosa, M. Panico, S. Berbenni, and K.W. Schwarz, Int. J. Plasticity 22, 2091 (2006).

    Article  MATH  Google Scholar 

  32. Z.L. Liu, X.M. Liu, Z. Zhuang, and X.C. You, Scripta Mater. 60, 594 (2009).

    Article  Google Scholar 

  33. C. Motz, D. Weygand, J. Senger, and P. Gumbsch, Acta Mater. 57, 1744 (2009).

    Article  Google Scholar 

  34. K.W. Schwarz, J. Appl. Phys. 85, 120 (1999).

    Article  Google Scholar 

  35. D. Weygand, L.H. Friedman, E. van der Giessen, and A. Needleman, Mater. Sci. Eng. A 309, 420 (2001).

    Article  Google Scholar 

  36. C.Z. Zhou, S.B. Biner, and R. LeSar, Acta Mater. 58, 1565 (2010).

    Article  Google Scholar 

  37. R.S. Fertig and S.P. Baker, Prog. Mater Sci. 54, 874 (2009).

    Article  Google Scholar 

  38. I. Ryu, W. Cai, W.D. Nix, and H. Gao, Acta Mater. 95, 176 (2015).

    Article  Google Scholar 

  39. C.R. Weinberger and W. Cai, J. Mech. Phys. Solids 58, 1011 (2010).

    Article  Google Scholar 

  40. C.R. Weinberger and W. Cai, Nano Lett. 10, 139 (2010).

    Article  Google Scholar 

  41. S. Ryu, K. Kang, and W. Cai, Proc. Nat. Acad. Sci. 108, 5174 (2011).

    Article  Google Scholar 

  42. S. Ryu, K. Kang, and W. Cai, J. Mater. Res. 26, 2335 (2011).

    Article  Google Scholar 

  43. J. Senger, D. Weygand, O. Kraft, and P. Gumbsch, Model Simul. Mater. Sci. 19, 074004 (2011).

  44. C. Motz and D.J. Dunstan, Acta Mater. 60, 1603 (2012).

    Article  Google Scholar 

  45. Z.X. Wu, Y.W. Zhang, M.H. Jhon, H.J. Gao, and D.J. Srolovitz, Nano Lett. 12, 910 (2012).

    Article  Google Scholar 

  46. S.W. Lee, A.T. Jennings, and J.R. Greer, Acta Mater. 61, 1872 (2013).

    Article  Google Scholar 

  47. J.D. Eshelby, J. Appl. Phys. 24, 176 (1953).

    Article  Google Scholar 

  48. I. Ryu, W. Cai, W.D. Nix, and H. Gao, Unpublished research (2015).

  49. A.T. Jennings, M.J. Burek, and J.R. Greer, Phys. Rev. Lett. 104, 135503 (2010).

    Article  Google Scholar 

  50. D. Kiener and A.M. Minor, Acta Mater. 59, 1328 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the U.S. Department of Energy through the DOE EPSCoR Implementation Grant No. DE-SC0007074. W.C. and W.D.N. gratefully acknowledge support from the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contracts No. DE-SC0010412 and No. DE-FG02-04ER46163, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, I., Cai, W., Nix, W.D. et al. Anisotropic Size-Dependent Plasticity in Face-Centered Cubic Micropillars Under Torsion. JOM 68, 253–260 (2016). https://doi.org/10.1007/s11837-015-1692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1692-1

Keywords

Navigation