Skip to main content
Log in

High-Temperature Stability and Grain Boundary Complexion Formation in a Nanocrystalline Cu-Zr Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanocrystalline Cu-3 at.% Zr powders with ~20 nm average grain size were created with mechanical alloying and their thermal stability was studied from 550–950°C. Annealing drove Zr segregation to the grain boundaries, which led to the formation of amorphous intergranular complexions at higher temperatures. Grain growth was retarded significantly, with 1 week of annealing at 950°C, or 98% of the solidus temperature, only leading to coarsening of the average grain size to 54 nm. The enhanced thermal stability can be connected to both a reduction in grain boundary energy with doping as well as the precipitation of ZrC particles. High mechanical strength is retained even after these aggressive heat treatments, showing that complexion engineering may be a viable path toward the fabrication of bulk nanostructured materials with excellent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater Sci. 51, 427 (2006).

    Article  Google Scholar 

  2. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  Google Scholar 

  3. Y.T. Zhu, X.Z. Liao, and X.L. Wu, Prog. Mater. Sci. 57, 1 (2012).

    Article  Google Scholar 

  4. M.A. Tschopp, H.A. Murdoch, L.J. Kecskes, and K.A. Darling, JOM 66, 1000 (2014).

    Article  Google Scholar 

  5. H.Q. Li, H. Choo, Y. Ren, T.A. Saleh, U. Lienert, P.K. Liaw, and F. Ebrahimi, Phys. Rev. Lett. 101, 015502 (2008).

    Article  Google Scholar 

  6. H.A. Padilla and B.L. Boyce, Exp. Mech. 50, 5 (2010).

    Article  Google Scholar 

  7. T.J. Rupert and C.A. Schuh, Acta Mater. 58, 4137 (2010).

    Article  Google Scholar 

  8. L. Liu, Y. Li, and F. Wang, J. Mater. Sci. Technol. 26, 1 (2010).

    Article  Google Scholar 

  9. C. Suryanarayana and C.C. Koch, Hyperfine Interact. 130, 5 (2000).

    Article  Google Scholar 

  10. P.G. Sanders, J.A. Eastman, and J.R. Weertman, Acta Mater. 45, 4019 (1997).

    Article  Google Scholar 

  11. J.A. Sharon, H.A.I. Padilla, and B.L. Boyce, J. Mater. Res. 28, 1539 (2013).

    Article  Google Scholar 

  12. K.A. Darling, B.K. VanLeeuwen, C.C. Koch, and R.O. Scattergood, Mater. Sci. Eng. A 527, 3572 (2010).

    Article  Google Scholar 

  13. R.A. Andrievski, J. Mater. Sci. 49, 1449 (2014).

    Article  Google Scholar 

  14. K. Pantleon and M.A.J. Somers, Mater. Sci. Eng. A 528, 65 (2010).

    Article  Google Scholar 

  15. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).

    Article  Google Scholar 

  16. C. Suryanarayana and N. Al-Aqeeli, Prog. Mater. Sci. 58, 383 (2013).

    Article  Google Scholar 

  17. C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones, J. Mater. Sci. 43, 7264 (2008).

    Article  Google Scholar 

  18. A.J. Detor and C.A. Schuh, Acta Mater. 55, 371 (2007).

    Article  Google Scholar 

  19. F. Zhou, J. Lee, and E.J. Lavernia, Scripta Mater. 44, 2013 (2001).

    Article  Google Scholar 

  20. J. Weissmuller, Nanostruct. Mater. 3, 261 (1993).

    Article  Google Scholar 

  21. J. Weissmuller, J. Mater. Res. 9, 4 (1994).

    Article  Google Scholar 

  22. H.A. Murdoch and C.A. Schuh, J. Mater. Res. 28, 2154 (2013).

    Article  Google Scholar 

  23. H. Bakker, Enthalpies in Alloys: Miedema’s Semi-Empirical Model (Zurich: Trans Tech Publications, 1998), p. 1–92.

    Google Scholar 

  24. M. Zhu, Z.F. Wu, M.Q. Zeng, L.Z. Ouyang, and Y. Gao, J. Mater. Sci. 43, 3259 (2008).

    Article  Google Scholar 

  25. K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu, Comput. Mater. Sci. 84, 255 (2014).

    Article  Google Scholar 

  26. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer, Acta Mater. 62, 1 (2014).

    Article  Google Scholar 

  27. E.W. Hart, Scripta Metall. 2, 179 (1968).

    Article  Google Scholar 

  28. D.R. Clarke and G. Thomas, J. Am. Ceram. Soc. 60, 491 (1977).

    Article  Google Scholar 

  29. S.J. Dillon, M.P. Harmer, and J. Luo, JOM 61, 38 (2009).

    Article  Google Scholar 

  30. L.K.V. Lou, T.E. Mitchell, and A.H. Heuer, J. Am. Ceram. Soc. 61, 392 (1978).

    Article  Google Scholar 

  31. O.A. Kogtenkova, S.G. Protasova, A.A. Mazilkin, B.B. Straumal, P. Zieba, T. Czeppe, and B. Baretzky, J. Mater. Sci. 47, 8367 (2012).

    Article  Google Scholar 

  32. E. Jud, Z. Zhang, W. Sigle, and L.J. Gauckler, J. Electroceram. 16, 191 (2006).

    Article  Google Scholar 

  33. S. Bhattacharyya, A. Subramaniam, C.T. Koch, R.M. Cannon, and M. Ruhle, Mater. Sci. Eng. A 422, 92 (2006).

    Article  Google Scholar 

  34. G.B. Winkelman, C. Dwyer, T.S. Hudson, D. Nguyen-Manh, M. Doblinger, R.L. Satet, M.J. Hoffmann, and D.J.H. Cockayne, Appl. Phys. Lett. 87, 061911 (2005).

    Article  Google Scholar 

  35. S.Y. Choi, D.Y. Yoon, and S.J.L. Kang, Acta Mater. 52, 3721 (2004).

    Article  Google Scholar 

  36. S.L. Ma, K.M. Asl, C. Tansarawiput, P.R. Cantwell, M.H. Qi, M.P. Harmer, and J. Luo, Scripta Mater. 66, 203 (2012).

    Article  Google Scholar 

  37. D. Raabe, M. Herbig, S. Sandlobes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.P. Choi, Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).

    Article  Google Scholar 

  38. M. Tang, W.C. Carter, and R.M. Cannon, J. Mater. Sci. 41, 7691 (2006).

    Article  Google Scholar 

  39. S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Mater. 55, 6208 (2007).

    Article  Google Scholar 

  40. A. Kundu, K.M. Asl, J. Luo, and M.P. Harmer, Scripta Mater. 68, 146 (2013).

    Article  Google Scholar 

  41. J. Luo, H.K. Cheng, K.M. Asl, C.J. Kiely, and M.P. Harmer, Science 333, 1730 (2011).

    Article  Google Scholar 

  42. W. Sigle, G. Richter, M. Ruhle, and S. Schmidt, Appl. Phys. Lett. 89, 121911 (2006).

    Article  Google Scholar 

  43. Z.L. Pan and T.J. Rupert, Comput. Mater. Sci. 93, 206 (2014).

    Article  Google Scholar 

  44. Z.L. Pan and T.J. Rupert, Acta Mater. 89, 205 (2015).

    Article  Google Scholar 

  45. J. Chen, L. Lu, and K. Lu, Scripta Mater. 54, 1913 (2006).

    Article  Google Scholar 

  46. Y.M. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Proc. Natl. Acad. Sci. USA 104, 11155 (2007).

    Article  Google Scholar 

  47. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, and E. Ma, Appl. Phys. Lett. 84, 4029 (2004).

    Article  Google Scholar 

  48. Y. Li, Q. Guo, J.A. Kalb, and C.V. Thompson, Science 322, 1816 (2008).

    Article  Google Scholar 

  49. Z. Zhang, F. Zhou, and E.J. Lavernia, Metall. Mater. Trans. A 34A, 1349 (2003).

    Article  Google Scholar 

  50. C.E. Krill and R. Birringer, Philos. Mag. A 77, 621 (1998).

    Article  Google Scholar 

  51. I. MacLaren, Ultramicroscopy 99, 103 (2004).

    Article  Google Scholar 

  52. A.J. Detor, M.K. Miller, and C.A. Schuh, Philos. Mag. Lett. 87, 581 (2007).

    Article  Google Scholar 

  53. J.Y. Xiang, S.C. Liu, W.T. Hu, Y. Zhang, C.K. Chen, P. Wang, J.L. He, D.L. Yu, B. Xu, Y.F. Lu, Y.J. Tian, and Z.Y. Liu, J. Eur. Ceram. Soc. 31, 1491 (2011).

    Article  Google Scholar 

  54. A.S. Khan, B. Farrokh, and L. Takacs, J. Mater. Sci. 43, 3305 (2008).

    Article  Google Scholar 

  55. A.S. Khan, H.Y. Zhang, and L. Takacs, Int. J. Plast. 16, 1459 (2000).

    Article  MATH  Google Scholar 

  56. M.A. Atwater, R.O. Scattergood, and C.C. Koch, Mater. Sci. Eng. A 559, 250 (2013).

    Article  Google Scholar 

  57. P.C. Millett, R.P. Selvam, and A. Saxena, Acta Mater. 55, 2329 (2007).

    Article  Google Scholar 

  58. L. Pauling, J. Am. Chem. Soc. 69, 542 (1947).

    Article  Google Scholar 

  59. D.G. Morris and M.A. Morris, Acta Metall. Mater. 39, 1763 (1991).

    Article  Google Scholar 

  60. T. Frolov, K.A. Darling, L.J. Kecskes, and Y. Mishin, Acta Mater. 60, 2158 (2012).

    Article  Google Scholar 

  61. W. Xu, L. Li, M. Saber, C. Koch, Y. Zhu, and R. Scattergood, Metall. Mater. Trans. A 46, 4394 (2015).

    Article  Google Scholar 

  62. S.J. Dillon and M.P. Harmer, J. Am. Ceram. Soc. 91, 2304 (2008).

    Article  Google Scholar 

  63. S.J. Dillon and M.P. Harmer, J. Am. Ceram. Soc. 91, 2314 (2008).

    Article  Google Scholar 

  64. M.P. Harmer, Science 332, 182 (2011).

    Article  Google Scholar 

  65. J. Luo, Appl. Phys. Lett. 95, 071911 (2009).

    Article  Google Scholar 

  66. G. Duscher, M.F. Chisholm, U. Alber, and M. Ruhle, Nat. Mater. 3, 621 (2004).

    Article  Google Scholar 

  67. D. Arias and J.P. Abriata, Bull. Alloy Phase Diagr. 11, 452 (1990).

    Article  Google Scholar 

  68. J. Luo, Crit. Rev. Solid State 32, 67 (2007).

    Article  Google Scholar 

  69. J. Luo, Curr. Opin. Solid State Mater. Sci. 12, 81 (2008).

    Article  Google Scholar 

  70. N.X. Zhou and J. Luo, Acta Mater. 91, 202 (2015).

    Article  Google Scholar 

  71. M.A. Atwater, H. Bahmanpour, R.O. Scattergood, and C.C. Koch, J. Mater. Sci. 48, 220 (2013).

    Article  Google Scholar 

  72. T.J. Rupert, J.C. Trenkle, and C.A. Schuh, Acta Mater. 59, 1619 (2011).

    Article  Google Scholar 

  73. Z. Zhang and D.L. Chen, Scripta Mater. 54, 1321 (2006).

    Article  Google Scholar 

  74. D. Tabor, J. Inst. Met. 79, 1 (1951).

    Google Scholar 

  75. N.Q. Vo, J. Schafer, R.S. Averback, K. Albe, Y. Ashkenazy, and P. Bellon, Scripta Mater. 65, 660 (2011).

    Article  Google Scholar 

  76. R.K. Rajgarhia, D.E. Spearot, and A. Saxena, J. Mater. Res. 25, 411 (2010).

    Article  Google Scholar 

  77. S. Ozerinc, K.P. Tai, N.Q. Vo, P. Bellon, R.S. Averback, and W.P. King, Scripta Mater. 67, 720 (2012).

    Article  Google Scholar 

  78. T.J. Rupert, J.R. Trelewicz, and C.A. Schuh, J. Mater. Res. 27, 1285 (2012).

    Article  Google Scholar 

  79. C. Brandl, T.C. Germann, and A. Misra, Acta Mater. 61, 3600 (2013).

    Article  Google Scholar 

  80. C. Gammer, C. Mangler, C. Rentenberger, and H.P. Karnthaler, Scripta Mater. 63, 312 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the U.S. Army Research Office under Grant W911NF-12-1-0511. Materials characterization was performed at the Laboratory for Electron and X-ray Instrumentation (LEXI) at UC Irvine, using instrumentation funded in part by the National Science Foundation Center for Chemistry at the Space–Time Limit (CHE-082913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Rupert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalajhedayati, A., Rupert, T.J. High-Temperature Stability and Grain Boundary Complexion Formation in a Nanocrystalline Cu-Zr Alloy. JOM 67, 2788–2801 (2015). https://doi.org/10.1007/s11837-015-1644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1644-9

Keywords

Navigation