Skip to main content
Log in

Fabrication of High-Pressure Cold-Sprayed Coating on Ni-Based Superalloy for High-Temperature Corrosive Conditions

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The surface behavior of the Ni-based superalloy (composition similar to UNS N06075) is altered in this study by depositing a 298-µm-thick coating for various erosive-corrosive and wear applications at a high temperature. The 50%Ni-50%Cr coating was developed by a high-pressure cold-spraying method. The coating microstructure was studied by various characterization techniques. The unmelted solid particles formed the coating structure, which is homogeneous, dense, hard, and free from cracks, oxides, and other defects. The coating composition and microstructure is suitable for providing protection to the substrate under high-temperature corrosive conditions. The developed coating performed well, with degradation rate of 0.47 mm/year, in the chlorine-based highly corrosive conditions of actual waste incinerator at 900°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.K. Singh Raman and A. Tiwari, JOM 66, 637 (2014).

    Article  Google Scholar 

  2. F. Wang and M. Zhao, Mater. Manuf. Proc. (2014). doi:10.1080/10426914.2014.952042.

    Google Scholar 

  3. M. Jeandin, G. Rolland, L.L. Descurninges, and M.H. Berger, Surf. Eng. 30, 291 (2014).

    Article  Google Scholar 

  4. Y. Gao, M.C. Chen, and C.X. Shi, Mater. Manuf. Proc. 14, 691 (1999).

    Article  Google Scholar 

  5. M.D. Trexler, R. Carter, W.S. de Rosset, D. Gray, D.J. Helfritch, and V.K. Champagne, Mater. Manuf. Proc. 27, 820 (2012).

    Article  Google Scholar 

  6. D.E. Wolfe, T.J. Eden, J.K. Potter, and A.P. Jaroh, J. Therm. Spray Technol. 15, 400 (2006).

    Article  Google Scholar 

  7. C. Lee and J. Kim, J. Therm. Spray Technol. 24, 592 (2015).

    Article  Google Scholar 

  8. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, J. Therm. Spray Technol. 15, 223 (2006).

    Article  Google Scholar 

  9. T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, P.H. Zajchowski, B. Pilsner, R.C. McCune, and K.J. Barnett, Surf. Coat. Technol. 111, 62 (1999).

    Article  Google Scholar 

  10. P. Fauchais, G. Montavon, and G. Bertrand, J. Therm. Spray Technol. 19, 56 (2010).

    Article  Google Scholar 

  11. Y. Liu, P. Samimi, I. Ghamarian, D.A. Brice, D.E. Huber, Z. Wang, V. Dixit, S. Koduri, H.L. Fraser, and P.C. Collins, JOM 67, 164 (2015).

    Article  Google Scholar 

  12. A.E. Segall, A.N. Papyrin, J.C. Conway Jr, and D. Shapiro, JOM 50, 52 (1998).

    Article  Google Scholar 

  13. N. Kaur, M. Kumar, S.K. Sharma, D.Y. Kim, S. Kumar, N.M. Chavan, S.V. Joshi, N. Singh, and H. Singh, Appl. Surf. Sci. 328, 13 (2015).

    Article  Google Scholar 

  14. L. Gillibert, C. Peyrega, D. Jeulin, V. Guipont, and M. Jeandin, J. Microsc. 248, 187 (2012).

    Article  Google Scholar 

  15. V. Guipont, M. Jeandin, G. Rolland, D. Jeulin, C. Peyrega, and W. Ludwig, Therm. Spray Bull. 3, 140 (2010).

    Google Scholar 

  16. D.K. Christoulis, S. Guetta, E. Irissou, V. Guipont, M.H. Berger, M. Jeandin, J.-G. Legoux, C. Moreau, S. Costil, M. Boustie, Y. Ichikawa, and K. Ogawa, J. Therm. Spray Technol. 19, 1062 (2010).

    Article  Google Scholar 

  17. G. Rolland, P. Sallamand, V. Guipont, M. Jeandin, E. Boller, and C. Bourda, J. Therm. Spray Technol. 21, 758 (2012).

    Article  Google Scholar 

  18. E. Irissou, J.G. Legoux, A.N. Ryabinin, B. Jodoin, and M. Christian, J. Therm. Spray Technol. 17, 495 (2008).

    Article  Google Scholar 

  19. R. Ghelichi and M. Guagliano, Frattura ed Integrità Strutt. 8, 30 (2009).

    Google Scholar 

  20. C.-J. Li, W.-Y. Li, and H. Lio, J. Therm. Spray Technol. 15, 212 (2006).

    Article  Google Scholar 

  21. M.A. Uusitalo, P.M.J. Vuoristo, and T.A. Mantyla, Mater. Sci. Eng. 346, 168 (2003).

    Article  Google Scholar 

  22. R.A. Antunes and M.C. Lopes de Oliveira, Corros. Sci. 76, 6 (2013).

    Article  Google Scholar 

  23. G. Chen, N. Zhang, W. Maa, V.S. Rotter, and Y. Wang, Fuel 140, 317 (2015).

    Article  Google Scholar 

  24. S. Karlsson, L.-E. Åmand, and J. Liske, Fuel 139, 482 (2015).

    Article  Google Scholar 

  25. J. Lehmusto, B.-J. Skrifvars, P. Yrjas, and M. Hupa, Corros. Sci. 53, 3315 (2011).

    Article  Google Scholar 

  26. A. Phongphiphat, C. Ryu, Y.B. Yang, K.N. Finney, A. Leyland, V.N. Sharifi, and J. Swithenbank, Corros. Sci. 52, 3861 (2010).

    Article  Google Scholar 

  27. A. Ruh and M. Spiegel, Corros. Sci. 48, 679 (2006).

    Article  Google Scholar 

  28. F. Goutier, S. Valette, A. Vardelle, and P. Lefort, Surf. Coat. Technol. 205, 4425 (2011).

    Article  Google Scholar 

  29. A. Zahs, M. Spiegel, and H.-J. Grabke, Corros. Sci. 42, 1093 (2000).

    Article  Google Scholar 

  30. Y. Kawahara, Corros. Sci. 44, 223 (2002).

    Article  Google Scholar 

  31. G. Sorell, Mater. High Temp. 14, 137 (1997).

  32. Y. Kawahara, J. Therm. Spray Technol. 16, 202 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

Author thankfully acknowledge the research grant under UGC Minor Project from UGC, New Delhi, Govt. of India, for carrying out this R&D work on “Studies on the behavior of coatings in improving the resistance to hot corrosion degradation in waste incineration environment,” vide F. No. 39-1003/2010(SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harminder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H. Fabrication of High-Pressure Cold-Sprayed Coating on Ni-Based Superalloy for High-Temperature Corrosive Conditions. JOM 67, 2564–2572 (2015). https://doi.org/10.1007/s11837-015-1628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1628-9

Keywords

Navigation