Skip to main content
Log in

Role of Y-Al Oxides During Extended Recovery Process of a Ferritic ODS Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructural stability of Y-Al oxides during the recrystallization of Fe-Cr-Al oxide dispersion strengthened alloy is studied in this work. The goal is to determine the specific distribution pattern of oxides depending where they are located: in the matrix or at the grain boundaries. It was concluded that those located at the grain boundaries yielded a faster coarsening than the ones in the matrix, although no significant differences in composition and/or crystal structure were observed. However, the recrystallization heat treatment leads to the dissolution of the Y2O3 and its combination with Al to form the YAlO3 perovskite oxide particles process, mainly located at the grain boundaries. Finally, atom probe tomography analysis revealed a significant Ti build-up at the grain boundaries that might affect subsequent migration during recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.A. Al-attab and Z.A. Zainal, Appl. Energy 138, 474 (2015).

    Article  Google Scholar 

  2. F.G. Wilson, B.R. Knott, and C.D. Desforges, Metall. Trans. A 9, 275 (1978).

    Article  Google Scholar 

  3. D.M. Jaeger and A.R. Jones, Proceedings of Conference on Materials for Advanced Power Engineering (Liege, Coutsouradis et al., Kluwer Academic, 1994), pp. 1515–1522.

  4. C. Capdevila, M. Serrano, and M. Campos, Mater. Sci. Technol. 30, 1655 (2014).

    Article  Google Scholar 

  5. C.L. Chen, G.J. Tatlock, and A.R. Jones, Mater. Sci. Forum 638, 3833 (2010).

    Article  Google Scholar 

  6. C. Capdevila, Metall. Mater. Trans. B 36A, 1547 (2005).

    Article  Google Scholar 

  7. C. Capdevila, Y.L. Chen, A.R. Jones, and H. Bhadeshia, ISIJ Int. 43, 777 (2003).

    Article  Google Scholar 

  8. J. Chao, C. Capdevila, M. Serrano, A. Garcia-Junceda, J.A. Jimenez, and M.K. Miller, Mater. Des. 53, 1037 (2014).

    Article  Google Scholar 

  9. C. García De Andrés, M.J. Bartolomé, C. Capdevila, D. San Martín, F.G. Caballero, and V. López, Mater. Charact. 46, 389 (2001).

    Article  Google Scholar 

  10. C. Capdevila, U. Miller, H. Jelenak, and H. Bhadeshia, Mater. Sci. Eng. A 316, 161 (2001).

    Article  Google Scholar 

  11. C. Capdevila, Y.L. Chen, N.C.K. Lassen, A.R. Jones, and H. Bhadeshia, Mater. Sci. Technol. 17, 693 (2001).

    Google Scholar 

  12. A. Fukami, Jeol News 5–7 (1967).

  13. M.K. Miller, Atom Probe Tomography Analysis at the Atomic Level (New York: Kluwer Academic-Plenum Press, 2000).

    Book  Google Scholar 

  14. G. Pimentel, I. Toda-Caraballo, J. Chao, and C. Capdevila, J. Mater. Sci. 47, 5605 (2012).

    Article  Google Scholar 

  15. J. Chao and C. Capdevila, Metall. Mater. Trans. A 45, 3767 (2014).

    Article  Google Scholar 

  16. G. Pimentel, J. Chao, and C. Capdevila, JOM 66, 780 (2014).

    Article  Google Scholar 

  17. D. Juul Jensen, Acta Metall. Mater. 43, 4117 (1995).

    Article  Google Scholar 

  18. M.J. Alinger, G.R. Odette, and D.T. Hoelzer, Acta Mater. 57, 392 (2009).

    Article  Google Scholar 

  19. S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, and T. Kobayashi, J. Nucl. Mater. 283–287, 702–706 (2000).

    Article  Google Scholar 

  20. C. Chen, P. Wang, and G. Tatlock, Mater. High Temp. 26, 299 (2009).

    Article  Google Scholar 

  21. C.H. Zhang, A. Kimura, R. Kasada, J. Jang, H. Kishimoto, and Y.T. Yang, J. Nucl. Mater. 417, 221 (2011).

    Article  Google Scholar 

  22. C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis, Acta Mater. 61, 2219 (2013).

    Article  Google Scholar 

  23. R. Kasada, N. Toda, K. Yutani, H.S. Cho, H. Kishimoto, and A. Kimura, J. Nucl. Mater. 367–370, 222 (2007).

    Article  Google Scholar 

  24. A. Czyrska-Filemonowicz, D. Clemens, and W.J. Quadakkers, J. Mater. Process. Tech. 53, 93 (1995).

    Article  Google Scholar 

  25. M.A. Miodownik, J.W. Martin, and E.A. Little, J. Mater. Sci. Lett. 12, 834 (1993).

    Article  Google Scholar 

  26. C.M. Parish, C. Capdevila, and M.K. Miller, Ultramicroscopy 111, 440 (2011).

    Article  Google Scholar 

  27. M.C. Brandes, L. Kovarik, M.K. Miller, G.S. Daehn, and M.J. Mills, Acta Mater. 60, 1827 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

PM 2000™ is a trademark of Plansee GmbH. LEAP® is a registered trademark of Cameca Instruments, Inc. CC and GP acknowledge financial support to Spanish Ministerio de Ciencia e Innovación in the form of a Coordinate Project in the Energy Area of Plan Nacional 2009 (ENE2009-13766-C04-01). GP, KD, TB, and GJT acknowledge the NiCaL Centre of the University of Liverpool. Atom probe tomography (MKM) was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. GP acknowledges the MINECO for supporting her research under a FPI Grant (BES-2010-032747) and two summer internship grants: EEBB-I-12-03885 at the ORNL (USA) and EEBB-I-2013-07176 at the University of Liverpool (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Capdevila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capdevila, C., Pimentel, G., Aranda, M.M. et al. Role of Y-Al Oxides During Extended Recovery Process of a Ferritic ODS Alloy. JOM 67, 2208–2215 (2015). https://doi.org/10.1007/s11837-015-1559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1559-5

Keywords

Navigation