Skip to main content
Log in

Solid-Solution Hardening in Mg-Gd-TM (TM = Ag, Zn, and Zr) Alloys: An Integrated Density Functional Theory and Electron Work Function Study

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The current work aims to reveal the effects of solute atoms (TM = Ag, Zn, and Zr) on the age hardening of Mg-Gd-based alloys via the density functional theory and electron work function (EWF) approaches. The 10H LPSO phases of Mg-Gd-TM alloys are selected as the model case due to the improved strength and ductility such long periodic stacking ordered precipitates (LPSOs) offer. The CALPHAD-modeling method is applied to predict the EWF in the ternary Mg-Gd-TM alloys. The obtained EWFs of these Mg alloys are shown to match well with previous experimental and theoretical results. Moreover, the variation of EWF in the ternary Mg-Gd-TM alloys is attributed to the structure contribution [i.e., the formation of face-centered cubic (fcc)-type fault layers] and the chemical effect of solute atoms (i.e., electron redistributions). With the knowledge of bonding charge density between the solute and solvent atoms, the present work provides insight into the correlations between the EWF and hardness of Mg-Gd-TM alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Shang, H. Zhang, S. Ganeshan, and Z.K. Liu, JOM 60, 45 (2008).

    Article  Google Scholar 

  2. T.M. Pollock, Science 328, 986 (2010).

    Article  Google Scholar 

  3. Q. Yu, L. Qi, R.K. Mishra, J. Li, and A.M. Minor, Proc. Natl. Acad. Sci. USA 110, 13289 (2013).

    Article  Google Scholar 

  4. S.R. Agnew and O. Duygulu, Int. J. Plast 21, 1161 (2005).

    Article  MATH  Google Scholar 

  5. M.H. Yoo, Metall. Trans. A 12, 409 (1981).

    Article  Google Scholar 

  6. T. Itoi, K. Takahashi, H. Moriyama, and M. Hirohashi, Scripta Mater. 59, 1155 (2008).

    Article  Google Scholar 

  7. H. Yokobayashi, K. Kishida, H. Inui, M. Yamasaki, and Y. Kawamura, Acta Mater. 59, 7287 (2011).

    Article  Google Scholar 

  8. J. Zhang, W. Zhang, L. Bian, W. Cheng, X. Niu, C. Xu, and S. Wu, Mater. Sci. Eng. A 585, 268 (2013).

    Article  Google Scholar 

  9. M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, and Y. Kawamura, Acta Mater. 55, 6798 (2007).

    Article  Google Scholar 

  10. J. Zhang, C. Chen, W. Cheng, L. Bian, H. Wang, and C. Xu, Mater. Sci. Eng. A 559, 416 (2013).

    Article  Google Scholar 

  11. Y.M. Zhu, A.J. Morton, and J.F. Nie, Acta Mater. 60, 6562 (2012).

    Article  Google Scholar 

  12. A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi, and J. Koike, Mater. Trans. 43, 580 (2002).

    Article  Google Scholar 

  13. W.Y. Wang, S.L. Shang, Y. Wang, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X.D. Hui, and Z.-K. Liu, J. Alloy. Compd. 586, 656 (2014).

    Article  Google Scholar 

  14. E. Onorbe, G. Garces, P. Perez, and P. Adeva, J. Mater. Sci. 47, 1085 (2012).

    Article  Google Scholar 

  15. J.F. Nie, Metall. Mater. Trans. A 43, 3891 (2012).

    Article  Google Scholar 

  16. D. Egusa and E. Abe, Acta Mater. 60, 166 (2012).

    Article  Google Scholar 

  17. J.E. Saal and C. Wolverton, Scripta Mater. 67, 798 (2012).

    Article  Google Scholar 

  18. J.E. Saal and C. Wolverton, Acta Mater. 68, 325 (2014).

    Article  Google Scholar 

  19. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013).

    Article  Google Scholar 

  20. A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, and J. Koike, J. Mater. Res. 16, 1894 (2001).

    Article  Google Scholar 

  21. J.P. Li, Z. Yang, T. Liu, Y.C. Guo, F. Xia, J.M. Yang, and M.X. Liang, Scripta Mater. 56, 137 (2007).

    Article  Google Scholar 

  22. X. Gao and J.F. Nie, Scripta Mater. 58, 619 (2008).

    Article  Google Scholar 

  23. J. Dai, S. Zhu, M.A. Easton, W. Xu, G. Wu, and W. Ding, Mater. Charact. 88, 7 (2014).

    Article  Google Scholar 

  24. L. Gao, R.S. Chen, and E.H. Han, J. Alloy. Compd. 481, 379 (2009).

    Article  Google Scholar 

  25. H. Liu, Y. Gao, J.Z. Liu, Y.M. Zhu, Y. Wang, and J.F. Nie, Acta Mater. 61, 453 (2013).

    Article  Google Scholar 

  26. Z. Xu, M. Weyland, and J.F. Nie, Acta Mater. 81, 58 (2014).

    Article  Google Scholar 

  27. K. Yamada, Y. Okubo, S. Kamado, and Y. Kojima, Aicam 2005, ed. M. Nogami, R. Jin, T. Kasuga, and W. Yang (Zurich, Switzerland: Trans Tech Publications Ltd., 2006), pp. 417–420.

  28. A. Issa, J.E. Saal, and C. Wolverton, Acta Mater. 65, 240 (2014).

    Article  Google Scholar 

  29. A. Issa, J.E. Saal, and C. Wolverton, Acta Mater. 83, 75 (2015).

    Article  Google Scholar 

  30. J.H. Zhang, Z. Leng, S.J. Liu, J.Q. Li, M.L. Zhang, and R.Z. Wu, J. Alloy. Compd. 509, 7717 (2011).

    Article  Google Scholar 

  31. R.G. Li, J.F. Nie, G.J. Huang, Y.C. Xin, and Q. Liu, Scripta Mater. 64, 950 (2011).

    Article  Google Scholar 

  32. X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, and J.F. Nie, Mater. Sci. Eng. A 431, 322 (2006).

    Article  Google Scholar 

  33. M. Nishijima and K. Hiraga, Mater. Trans. 48, 10 (2006).

    Article  Google Scholar 

  34. Z.R. Liu and D.Y. Li, Acta Mater. 89, 225 (2015).

    Article  Google Scholar 

  35. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch, Acta Mater. 51, 5335 (2003).

    Article  Google Scholar 

  36. S. Kamran, K. Chen, and L. Chen, Phys. Rev. B 79, 024106 (2009).

    Article  Google Scholar 

  37. P.N.H. Nakashima, A.E. Smith, J. Etheridge, and B.C. Muddle, Science 331, 1583 (2011).

    Article  Google Scholar 

  38. W.Y. Wang, S.L. Shang, Y. Wang, K.A. Darling, S.N. Mathaudhu, X.D. Hui, and Z.K. Liu, Chem. Phys. Lett. 551, 121 (2012).

    Article  Google Scholar 

  39. W.Y. Wang, S.L. Shang, Y. Wang, H.Z. Fang, S. Mathaudhu, X.D. Hui, and Z.-K. Liu, J. Mater. Sci. 50, 1071 (2015).

    Article  Google Scholar 

  40. Y. Wang, W.Y. Wang, L.-Q. Chen, and Z.-K. Liu, J. Comput. Chem. 36, 1008 (2015).

    Article  Google Scholar 

  41. J.F. Nie, Y.M. Zhu, J.Z. Liu, and X.Y. Fang, Science 340, 957 (2013).

    Article  Google Scholar 

  42. E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue, Acta Mater. 50, 3845 (2002).

    Article  Google Scholar 

  43. Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-Ishi, K. Hono, and J.F. Nie, Scripta Mater. 60, 980 (2009).

    Article  Google Scholar 

  44. Y. Wang and J.P. Perdew, Phys. Rev. B 44, 13298 (1991).

    Article  Google Scholar 

  45. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  46. G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  47. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  48. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  Google Scholar 

  49. P.E. Blochl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Article  Google Scholar 

  50. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).

    Article  Google Scholar 

  51. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

  52. S. Halas and T. Durakiewicz, J. Phys.: Condens. Matter. 10, 10815 (1998).

    Google Scholar 

  53. J.A. Rothschild and M. Eizenberg, Phys. Rev. B 81, 224201 (2010).

    Article  Google Scholar 

  54. H. Lu, G. Hua, and D. Li, Appl. Phys. Lett. 103, 261902 (2013).

    Article  Google Scholar 

  55. T. Durakiewicz, S. Halas, A. Arko, J.J. Joyce, and D.P. Moore, Phys. Rev. B 64, 045101 (2001).

    Article  Google Scholar 

  56. R. Rahemi and D. Li, Scripta Mater. 99, 41 (2015).

    Article  Google Scholar 

  57. S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, Y. Wang, and Z.K. Liu, Comp. Mater. Sci. 48, 813 (2010).

    Article  Google Scholar 

  58. Z.-K. Liu, J. Phase Equilib. Diffus. 30, 517 (2009).

    Article  MATH  Google Scholar 

  59. X.F. Wang, T.E. Jones, Y. Wu, Z.P. Lu, S. Halas, T. Durakiewicz, and M.E. Eberhart, J. Chem. Phys. 141, 024503 (2014).

    Article  Google Scholar 

  60. W.Y. Wang, S.L. Shang, Y. Wang, Z.-G. Mei, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X.D. Hui, and Z.-K. Liu, Mater. Res. Lett. 2, 29 (2014).

    Article  Google Scholar 

  61. S.L. Shang, W.Y. Wang, B.C. Zhou, Y. Wang, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, and Z.K. Liu, Acta Mater. 67, 168 (2014).

    Article  Google Scholar 

  62. J.J. Gilman, Philos. Mag. A 82, 1811 (2002).

    Article  Google Scholar 

  63. G. Hua and D. Li, Appl. Phys. Lett. 99, 041907 (2011).

    Article  Google Scholar 

  64. G. Hua and D. Li, Phys. Status Solidi B 249, 1517 (2012).

    Article  Google Scholar 

  65. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Article  Google Scholar 

  66. J.F. Nie, X. Gao, and S.M. Zhu, Scripta Mater. 53, 1049 (2005).

    Article  Google Scholar 

  67. Y.M. Zhu, A.J. Morton, and J.F. Nie, Scripta Mater. 58, 525 (2008).

    Article  Google Scholar 

  68. M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, and M. Nishida, Mater. Sci. Eng., A 393, 269 (2005).

    Article  Google Scholar 

  69. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, and Z.K. Liu, CALPHAD 28, 79 (2004).

    Article  Google Scholar 

  70. P. Karen, A. Kjekshus, Q. Huang, and V.L. Karen, J. Alloy. Compd. 282, 72 (1999).

    Article  Google Scholar 

  71. A.R. Wazzan and L.B. Robinson, Phys. Rev. 155, 586 (1967).

    Article  Google Scholar 

  72. L.J. Slutsky and C.W. Garland, Phys. Rev. 107, 972 (1957).

    Article  Google Scholar 

Download references

Acknowledgements

The current work was financially supported by the National Science Foundation (Grant No. DMR-1006557) and the U.S. Army Research Laboratory (Project No. W911NF-08-2-0084) in the Unites States and National Natural Science Foundation of China (50431030 and 50871013). W.Y. Wang acknowledges the support from the Project Based Personnel Exchange Program with American Academic Exchange Service and China Scholarship Council (2008[3072]). First-principles calculations were carried out on the LION clusters at the Pennsylvania State University supported by the Materials Simulation Center and the Institute for CyberScience. Calculations were also carried out on the CyberStar cluster funded by the NSF through Grant No. OCI-0821527and the XSEDE clusters supported by NSF through Grant ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.Y., Shang, S.L., Wang, Y. et al. Solid-Solution Hardening in Mg-Gd-TM (TM = Ag, Zn, and Zr) Alloys: An Integrated Density Functional Theory and Electron Work Function Study. JOM 67, 2433–2441 (2015). https://doi.org/10.1007/s11837-015-1555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1555-9

Keywords

Navigation