Skip to main content
Log in

EBSD-Assisted Slip Trace Analysis During In Situ SEM Mechanical Testing: Application to Unravel Grain Size Effects on Plasticity of Pure Mg Polycrystals

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The aim of this paper is to highlight the unique capabilities of electron backscattered diffraction-assisted trace analysis during in situ SEM mechanical testing of metals in order to get a better understanding of plasticity at the microscale. The technique allows for the direct observation of different deformation mechanisms, such as slip and twinning activity, at the microscale. Moreover, and contrary to other methods, it can provide statistically sound evidence of the role of the local microstructure, such as the local texture and grain boundary network, on the activation of the different deformation modes. The power of the technique is demonstrated by reviewing recent work that has been key to solving several remaining controversies regarding the role of grain size, strain rate and temperature on the plasticity of Mg polycrystals. In particular, it was found that, with decreasing grain size, at room temperature, a clear transition from non-basal- to basal-slip-dominated flow takes place under tension and a transition from twinning to basal slip takes place under compression. On the other hand, a similar transition from twinning to basal slip takes place with increasing temperature and decreasing strain rate. The emergence of basal slip as a dominant mechanism is shown to be due to increasing levels of connectivity between favorably oriented grains, which facilitate slip transfer across grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Haasen and B.L. Mordike, Physical Metallurgy, 3rd ed. (Cambridge: Cambridge University Press, 1996).

    Google Scholar 

  2. Advances in wrought magnesium alloys. Ed. C. Bettles and M. Barnett, (Woodhead Publishing: Cambridge, 2012).

  3. D.B. Williams and C.B. Carter, Transmission electron microscopy (Berlin: Plenum Press, 1996).

    Book  Google Scholar 

  4. J.A. del Valle, M.T. Pérez-Prado, and O.A. Ruano, Metall. Trans. A 36, 1427 (2005).

    Article  Google Scholar 

  5. W.F. Hosford, Mechanical behavior of metals (Cambridge: Cambridge University Press, 2005).

    Book  Google Scholar 

  6. N. Stanford and M.R. Barnett, Int. J. Plast 47, 165 (2013).

    Article  Google Scholar 

  7. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tomé, Philos. Mag. 90, 2161 (2010).

    Article  Google Scholar 

  8. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Int. J. Plast. 27, 688 (2011).

    Article  MATH  Google Scholar 

  9. A. Fernández, M.T. Pérez Prado, Y. Wei, and A. Jérusalem, Int. J. Plast 27, 1739 (2011).

    Article  MATH  Google Scholar 

  10. V. Herrera-Solaz, J. Lorca, E. Dogan, I. Karaman, and J. Segurado, Int. J. Plast. 57, 1 (2014).

    Article  Google Scholar 

  11. S.R. Agnew, C.N. Tome, D.W. Brown, T.M. Holden, and S.C. Vogel, Scr. Mater. 48, 1003 (2003).

    Article  Google Scholar 

  12. A. Pandey, F. Kabirian, J.-H. Hwang, S.-H. Choi, and A.S. Khan, Int. J. Plast 68, 111 (2015).

    Article  Google Scholar 

  13. R. Sánchez-Martin, M.T. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiérrez-Urrutia, J. Llorca, and J.M. Molina-Aldareguia, Acta Mater. 71, 283 (2014).

    Article  Google Scholar 

  14. R. Sánchez-Martin, M.T. Pérez-Prado, J. Segurado, and J.M. Molina-Aldareguia, Acta Mater., (2015). doi:10.1016/j.actamat.2015.04.005.

  15. R. Sánchez-Martin, C. Zambaldi, M.T. Pérez-Prado, and J.M. Molina-Aldareguia, Scr. Mater., 2015. doi:10.1016/j.scriptamat.2015.03.012.

  16. B.A. Simkin, B.C. Ng, T.R. Bieler, M.A. Crimp, and D.E. Mason, Intermetallics 11, 215 (2003).

    Article  Google Scholar 

  17. C.J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, and M.T. Pérez-Prado, Acta Mater. 60, 1889 (2012).

    Article  Google Scholar 

  18. C.J. Boehlert, H. Li, L. Wang, and B. Bartha, Adv. Mater. Process. 168, 41 (2010).

    Google Scholar 

  19. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, Int. J. Plast 25, 1655 (2009).

    Article  MATH  Google Scholar 

  20. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez, Prado. Acta Mater. 88, 232 (2015).

    Article  Google Scholar 

  21. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, F. Carreño, and M.T. Pérez, Prado. Acta Mater. 85, 1 (2015).

    Article  Google Scholar 

  22. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez, Prado. Acta Mater. 84, 443 (2015).

    Article  Google Scholar 

  23. J.A. del Valle, F. Carreño, and O.A. Ruano, Acta Mater. 54, 4247 (2006).

    Article  Google Scholar 

  24. Q. Yang and A.K. Ghosh, Acta Mater. 54, 5159 (2006).

    Article  Google Scholar 

  25. S.R. Agnew, M.H. Yoo, and C.N. Tomé, Acta Mater. 49, 4277 (2001).

    Article  Google Scholar 

  26. S.R. Agnew and O. Duygulu, Int. J. Plast 21, 1161 (2005).

    Article  MATH  Google Scholar 

  27. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew, Int. J. Plast 25, 861 (2009).

    Article  MATH  Google Scholar 

  28. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé, Int. J. Solids Struct. 47, 2905 (2010).

    Article  MATH  Google Scholar 

  29. J.A. del Valle and O.A. Ruano, Mater. Lett. 63, 1551 (2009).

    Article  Google Scholar 

  30. D.R. Atwell, M.R. Barnett, and W.B. Hutchinson, Mater. Sci. Eng. A 549, 1 (2012).

    Article  Google Scholar 

  31. M.A. Meyers, O. Vohringer, and V.A. Lubarda, Acta Mater. 49, 4025 (2001).

    Article  Google Scholar 

  32. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).

    Article  Google Scholar 

  33. M.R. Barnett, Mater. Sci. Eng. A 464, 1 (2007).

    Article  Google Scholar 

  34. Y. Chino, K. Kimura, and M. Mabuchi, Mater. Sci. Eng. A 486, 481 (2008).

    Article  Google Scholar 

  35. C.A. Schuh, M. Kumar, and W. King, Acta Mater. 51, 687 (2003).

    Article  Google Scholar 

  36. B.W. Reed and C.A. Schuh, in: Electron Backscatter Diffraction in Materials Science, ed. A.J. Schwartz, M. Kumar, B.L. Adams and D.P. Field (Springer: Berlin, 2009), p. 205.

  37. V.Y. Gertsman, M. Janecek, and K. Tangri, Acta Mater. 44, 2869 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from the European Commission (ExoMet Project, 7th Framework Programme, contract FP7-NMP3-LA-2012-280421). The research leading to these results has also received funding from the Spanish Ministry of Economy and Innovation (MAT2012-31889) and the Madrid region under programme S2013/MIT-2775, DIMMAT Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Molina-Aldareguia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cepeda-Jiménez, C., Molina-Aldareguia, J. & Pérez-Prado, M. EBSD-Assisted Slip Trace Analysis During In Situ SEM Mechanical Testing: Application to Unravel Grain Size Effects on Plasticity of Pure Mg Polycrystals. JOM 68, 116–126 (2016). https://doi.org/10.1007/s11837-015-1521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1521-6

Keywords

Navigation