Skip to main content
Log in

On the Growth of Fatigue Cracks from Material and Manufacturing Discontinuities Under Variable Amplitude Loading

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper focuses on problems associated with aircraft sustainment-related issues and illustrates how cracks, that grow from small naturally occurring material and manufacturing discontinuities in operational aircraft, behave. It also explains how, in accordance with the US Damage Tolerant Design Handbook, the size of the initiating flaw is mandated, e.g. a 1.27-mm-deep semi-circular surface crack for a crack emanating from a cut out in a thick structure, a 3.175-mm-deep semi-circular surface crack in thick structure, etc. It is subsequently shown that, for cracks in (two) full-scale aircraft tests that arose from either small manufacturing defects or etch pits, the use of da/dN versus ∆K data obtained from ASTM E647 tests on long cracks to determine the number of cycles to failure from the mandated initial crack size can lead to the life being significantly under-estimated and therefore to an unnecessarily significant increase in the number of inspections, and, hence, a significant cost burden and an unnecessary reduction in aircraft availability. In contrast it is shown that, for the examples analysed, the use of the Hartman–Schijve crack growth equation representation of the small crack da/dN versus ∆K data results in computed crack depth versus flight loads histories that are in good agreement with measured data. It is also shown that, for the examples considered, crack growth from corrosion pits and the associated scatter can also be captured by the Hartman–Schijve crack growth equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In Ref. 4, it is commented that, in the USA, there are more trips per day over structurally deficient bridges than there are McDonald’s hamburgers eaten in the entire USA.

  2. The ab initio design of aerospace vehicles requires that all structures be designed in accordance with damage tolerance design principles which, for military aircraft, are detailed in the Joint Services Structural Guidelines JSSG2006 and in the USAF Damage Tolerant Design Handbook9. However, as explained in Refs. 7,9, whereas the initial (starting) crack sizes mandated in Ref. 9 for ab initio design are relatively large, in contrast cracks in operational aircraft, i.e. in aircraft sustainment-related problems, often initiate and grow from small naturally occurring material discontinuities.2932 In such cases, as explained in ASTM E647-13a and,7 the crack growth analysis should use the appropriate short crack da/dN versus ∆K curve.

  3. Crack tip shielding is defined in Refs. 11,12 as any process that results in the effective value of ΔK seen during a load cycle being less than ΔK.

  4. The Australian Defence Science and Technology Organisation (DSTO).

  5. This feature is also termed a mousehole or a weep hole.

References

  1. C.F. Tiffany, J.P. Gallagher, and C.A. Babish IV, Aeronautical Systems Center, Engineering Directorate, Wright-Patterson Air Force Base, ASC-TR-2010-5002.

  2. FAA-2010-1280-001, Federal Register, 76, 6 (2011).

  3. FAA AC No: 120-104, 01/01/2011.

  4. S.L. Davis, K. DeGood, N. Donohue, and D. Goldberg, Transportation for America (2013) http://t4america.org/docs/bridgereport2013/2013BridgeReport.pdf.

  5. http://www.railwayage.com/index.php/mechanical/freight-cars/ttci-rd-how-healthy-are-your-castings.html.

  6. Final Report—Rail Inquiry 09-101 (incorporating 08-105), www.taic.org.nz.

  7. R. Jones, Fatigue Fract. Eng. Mater. Struct. 37, 463 (2014).

    Article  Google Scholar 

  8. J. Schijve, Eng. Fract. Mech. 11, 207 (1979).

    Article  Google Scholar 

  9. P.C. Miedlar, A.P. Berens, A. Gunderson, and J.P. Gallagher, AFRL-VA-WP-TR-2003-3002.

  10. S. Suresh and R.O. Ritchie, Int. Met. Rev. 29, 445 (1984).

    Article  Google Scholar 

  11. R.O. Ritchie and J. Lankford, Mater. Sci. Eng. 84, 11 (1986).

    Article  Google Scholar 

  12. R.O. Ritchie, W. Yu, A.F. Blom, and D.K. Holm, Fatigue Fract. Eng. Mater. Struct. 10, 343 (1987).

    Article  Google Scholar 

  13. K.J. Miller, Fatigue Fract. Eng. Mater. Struct. 10, 75 (1987).

    Article  Google Scholar 

  14. D.L. Davidson and J. Langford, Int. Mater. Rev. 37, 45 (1992).

    Article  Google Scholar 

  15. J. Schijve, in Proceedings FAA/NASA International Symposium, Hampton (1994), ed. C.E. Harris, NASA Conference Publication 3274, (1994), pp. 665–681.

  16. W. Schutz, Eng. Fract. Mech. 54, 263 (1996).

    Article  Google Scholar 

  17. J.C. Newman, Prog. Aerosp. Sci. 3, 347 (1998).

    Article  Google Scholar 

  18. M. Skorupa, Fatigue Fract. Eng. Mater. Struct. 21, 987 (1998).

    Article  Google Scholar 

  19. M. Skorupa, Fatigue Fract. Eng. Mater. Struct. 22, 905 (1998).

    Article  Google Scholar 

  20. J.W. Lincoln and R.A. Melliere, AIAA J. Aircr. 36, 737 (1000).

    Article  Google Scholar 

  21. W. Cui, J. Mater. Sci. Technol. 7, 43 (2002).

    Google Scholar 

  22. J. Schijve, Fatigue of Structures and Materials (Heidelberg: Springer, 2008).

    Google Scholar 

  23. S.U. Khan, R.C. Alderliesten, J. Schijve, and R. Benedictus, Computational & Experimental, Analysis of Damage Materials, ed. D.G. Pavluo (Trivandrum: Transworld Research Network, 2007), pp. 77–105.

    Google Scholar 

  24. J. Schijve, Int. J. Fatigue 25, 679 (2003).

    Article  MATH  Google Scholar 

  25. D. Kujawski, Eng. Fract. Mech. 69, 1315 (2002).

    Article  Google Scholar 

  26. L. Molent, Eng. Fract. Mech. (2014). doi:10.1016/j.engfracmech.2014.09.001.

    Google Scholar 

  27. R. Jones and D. Tamboli, Eng. Fail. Anal. 29, 149 (2013).

    Article  Google Scholar 

  28. T. Machniewicz, Fatigue Fract. Eng. Mater. Struct. 36, 361 (2012).

    Article  Google Scholar 

  29. D.A. Lados, D. Apelian, P.C. Paris, and J.K. Donald, Int. J. Fatigue 27, 1463 (2005).

    Article  Google Scholar 

  30. J.T. Burns, R.P. Gangloff, and R.W. Bush, Proceedings of DoD Corrosion Conference, La Quinta Ca (31 Jul–5 Aug 2011).

  31. SA. Barter and L. Molent, Proceedings 28th International Congress of the Aeronautical Sciences, Brisbane (23–28th September 2012).

  32. S.A. Barter and L. Molent, Eng. Fail. Anal. 34, 181 (2013).

    Article  Google Scholar 

  33. J.K. Donald and E.P. Phillips, Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume. ASTM STP 1343, ed. R.C. McClung and J.C. Newman, Jr (West Conshohocken: ASTM International, 1997),

    Google Scholar 

  34. J.K. Donald and P.C. Paris, Int. J. Fatigue 21, S47 (1999).

    Article  Google Scholar 

  35. R. Jones, L. Molent, and K. Walker, Int. J. Fatigue 40, 43 (2012).

    Article  Google Scholar 

  36. R.G. Forman and S.R. Mettu, Fracture Mechanics 22nd Symposium, Vol. 1, ASTM STP 1131, eds. H.A. Ernst, A. Saxena and D.L. McDowell (American Society for Testing and Materials, Philadelphia, 1992).

  37. Fatigue Crack Growth Computer Program “NASGRO” Version 3.0: Reference Manual, JSC-22267b, March 2002.

  38. J.A. Harter, AFRL-VA-Wright-Patterson-TR-1999-3016.

  39. ASTM, Measurement of fatigue crack growth rates. ASTM E647-13, USA (2013).

  40. P. Trathan, Proceedings 18th International Conference on Corrosion, Perth (20–24 November 2011).

  41. R.J.H. Wanhill and M.F.J. Koolloos, Int. J. Fatigue 23, S337 (2001).

    Article  Google Scholar 

  42. D. Peng, R. Jones, M. Lo, A. Bowler, G. Brick, M. Janardhana, and D. Edwards, Eng. Fract. Mech. (2015). doi:10.1016/j.engfracmech.01.032.

    Google Scholar 

  43. B.J. Murtagh and K. F. Walker, DSTO-TN-0108 (1997).

  44. B. Dixon, L. Molent, and S.A. Barter, Proceedings of 8th NASA/FAA/DOD Conference on Aging Aircraft, Palm Springs (31 Jan–3 Feb 2005).

  45. R. Jones, L. Molent, and S. Pitt, Int. J. Fatigue 29, 1658 (2007).

    Article  MATH  Google Scholar 

  46. S.A. Barter, L.L. Molent, and R.H. Wanhill, Int. J. Fatigue 41, 1 (2012).

    Article  Google Scholar 

  47. A. Merati, Int. J. Fatigue 27, 33 (2005).

    Article  Google Scholar 

  48. R. Jones, L. Molent, and S. Barter, Int. J. Fatigue 55, 178 (2013).

    Article  Google Scholar 

  49. J.T. Burns, J.M. Larsen, and R.P. Gangloff, Int. J. Fatigue 42, 104 (2012).

    Article  Google Scholar 

  50. S. Kim, J.T. Burns, and R.P. Gangloff, Eng. Fract. Mech. 76, 651 (2009).

    Article  Google Scholar 

  51. ASTM standard G34-99, American Society for Testing and Materials (1999).

  52. S. Lee, B.W. Lifka, V.S. Agarwala, and G.M. Ugiansky, ASTM STP 1134 (1992).

  53. R. Jones, M. Lo, D. Peng, A. Bowler, M. Dorman, M. Janardhana, and N.S. Iyyer, Meccanica 50, 517 (2015).

    Article  Google Scholar 

  54. J.-M. Genkin, Master of Engineering Science Thesis, MIT (1994). Available on line at www.dtic.mil.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhys Jones.

Appendix: The Hartman–Schijve Variant of the Nasgro Crack Growth Equation

Appendix: The Hartman–Schijve Variant of the Nasgro Crack Growth Equation

The NASGRO equation36 can be written in the form:

$$ {\text{d}}a/{\text{d}}N \, = \, D \, \left[ {\left( {1 - f} \right)/\left( {1 - R} \right)} \right]^{m} \Delta K^{(m - p)} \left( {\Delta K \, - \, \Delta K_{\text{thr}} } \right)^{p} /\left( {1 - K_{\hbox{max} } /A} \right)^{q} = \, D \, \Delta K_{eff}^{(m - p)} \left( {\Delta K_{\text{eff}} - \, \Delta K_{{{\text{eff, th}}r}} } \right)^{p} /\left( {1 - {\rm K}_{\hbox{max} } /A} \right)^{q} $$
(5)

where D, m, p and q are constants, f = K op/K max, K op is the value of the stress intensity factor at which the crack first opens, ΔK eff = K max – K op and the terms ΔK thr and A are best interpreted as parameters chosen so as to fit the measured da/dN versus ΔK data. The NASGRO equation36 contains the Hartman–Schijve crack growth equation,7 viz:

$$ {\text{d}}a/{\text{d}}N \, = \, D \, \left( {\Delta K_{\text{eff}} - \, \Delta K_{\text{eff,thr}} } \right)^{p} /\left( {1{-}K_{\hbox{max} } /A} \right)^{p/2} $$
(6)

as a special case, i.e. m = p and q = p/2. (Here, ΔK eff,thr is the associated effective threshold value of ΔK thr.)

As explained in Ref. 7 and Appendix X3 of ASTM E647-13a, there is little R ratio and hence little crack closure effects associated with cracks that grow from small naturally occurring material discontinuities. In such cases for cracks that grow from small naturally occurring material discontinuities, the function f asymptotes to R and ΔK eff can be approximated by ΔK so that Eqs. 5 and 6 become

$$ {\text{d}}a/{\text{d}}N \, = \, D\Delta K^{(m - p)} (\Delta K{-}\Delta K_{\text{thr}} )^{p} /(1{-}K_{\hbox{max} } /A)^{q} $$
(7)

and

$$ {\text{d}}a/{\text{d}}N \, = \, D \, \left( {\Delta K \, {-} \, \Delta K_{\text{thr}} } \right)^{p} /\left( {1{-}K_{\hbox{max} } /A} \right)^{p/2} $$
(8)

respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, R., Peng, D., Singh Raman, R.K. et al. On the Growth of Fatigue Cracks from Material and Manufacturing Discontinuities Under Variable Amplitude Loading. JOM 67, 1385–1391 (2015). https://doi.org/10.1007/s11837-015-1437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1437-1

Keywords

Navigation