Skip to main content
Log in

Thermal Activation in Permanent Magnets

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The coercive field of permanent magnets decays with temperature. At non-zero temperatures, the system can overcome a finite energy barrier through thermal fluctuations. Using finite element micromagnetic simulations, we quantify this effect, which reduces coercivity in addition to the decrease of the coercive field associated with the temperature dependence of the anisotropy field, and validate the method through comparison with existing experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu, Adv. Mater. 23, 821 (2011)

  2. S. Bance, H. Oezelt, T. Schrefl, G. Ciuta, N.M. Dempsey, D. Givord, M. Winklhofer, G. Hrkac, G. Zimanyi, O. Gutfleisch, T.G. Woodcock, T. Shoji, M. Yano, A. Kato, and A. Manabe, Appl. Phys. Lett. 104, 182408 (2014)

  3. R. Skomski, P. Kumar, G.C. Hadjipanayis, and D.J. Sellmyer, IEEE Trans. Magn. 49, 3229 (2013)

  4. H. Kronmuller, K.-D. Durst, and M. Sagawa, J. Magn. Magn. Mater. 74, 291 (1988)

  5. W.F. Brown, J. Appl. Phys. 30, S62 (1959)

  6. E.P. Wohlfarth, J. Phys. F 14, L155 (1984)

  7. D. Givord, P. Tenaud, and T. Viadieu, IEEE Trans. Magn. 24, 1921 (1988)

  8. V.M.T.S. Barthem, D. Givord, M.F. Rossignol, and P. Tenaud, J. Magn. Magn. Mater. 242, 1395 (2002)

  9. X.C. Kou, H. Kronmüller, D. Givord, and M.F. Rossignol, Phys. Rev. B 50, 3849 (1994)

  10. M.P. Sharrock, IEEE Trans. Magn. 26, 193 (1990)

  11. J.W. Harrell, IEEE Trans. Magn. 37, 533 (2001)

  12. D. Suess, S. Eder, J. Lee, R. Dittrich, J. Fidler, J. Harrell, T. Schrefl, G. Hrkac, M. Schabes, N. Supper, and A. Berger, Phys. Rev. B 75, 174430 (2007)

  13. G. Henkelman, B.P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000)

  14. M.H. Ghandehari and J. Fidler, Mater. Lett. 5, 285 (1987)

  15. H. Nakamura, K. Hirota, M. Shimao, T. Minowa, and M. Honshima, IEEE Trans. Magn. 41, 3844 (2005)

  16. M.E. Schabes and H.N. Bertram, J. Appl. Phys. 64, 1347 (1988)

  17. M.E. Schabes, J. Magn. Magn. Mater. 95, 249 (1991)

  18. H.F. Schmidts and H. Kronmüller, J. Magn. Magn. Mater. 130, 329 (1994)

  19. H. Sepehri-Amin, T. Ohkubo, M. Gruber, T. Schrefl, and K. Hono, Scr. Mater. 89, 29 (2014)

  20. R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, and J. Fidler, J. Magn. Magn. Mater. 250, 12 (2002)

  21. R. Dittrich and T. Schrefl, IEEE Trans. Magn. 41, 3592 (2005)

  22. D. Suess, L. Breth, J. Lee, M. Fuger, C. Vogler, F. Bruckner, B. Bergmair, T. Huber, J. Fidler, and T. Schrefl, Phys. Rev. B 84, 224421 (2011)

  23. L. Exl, S. Bance, F. Reichel, T. Schrefl, H.P. Stimming, and N.J. Mauser, J. Appl. Phys. 115, 17D118 (2014)

  24. D. Suess, V. Tsiantos, T. Schrefl, J. Fidler, W. Scholz, H. Forster, R. Dittrich, and J.J. Miles, J. Magn. Magn. Mater. 248, 298 (2002)

  25. E. Weinan, W. Ren, and E. Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007)

  26. D. Givord, A. Lienard, P. Tenaud, and T. Viadieu, J. Magn. Magn. Mater. 67, L281 (1987)

  27. C. Vogler, F. Bruckner, B. Bergmair, T. Huber, D. Suess, and C. Dellago, Phys. Rev. B 88, 134409 (2013)

  28. W. Rave, K. Ramstöck, and A. Hubert, J. Magn. Magn. Mater. 183, 329 (1998)

  29. H. Sepehri-Amin, T. Ohkubo, S. Nagashima, M. Yano, T. Shoji, A. Kato, T. Schrefl, and K. Hono, Acta Mater. 61, 6622 (2013)

  30. S. Bance, B. Seebacher, T. Schrefl, L. Exl, M. Winklhofer, G. Hrkac, G. Zimanyi, T. Shoji, M. Yano, N. Sakuma, M. Ito, A. Kato, and A. Manabe, J. Appl. Phys. 116, 233903 (2014)

  31. E.C. Stoner and E.P. Wohlfarth. Philos. Trans. R. Soc. A 240, 599 (1948)

  32. S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, and H. Yamauchi, J. Appl. Phys. 59, 873 (1986)

  33. M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and S. Hirosawa, J. Appl. Phys. 57, 4094 (1985)

  34. M. Sagawa, S. Hirosawa, K. Tokuhara, H. Yamamoto, S. Fujimura, Y. Tsubokawa, and R. Shimizu, J. Appl. Phys. 61, 3559 (1987)

  35. M.J. Hawton, PhD Thesis, Durham University (1943)

  36. S Hock, Züchtung und magnetische Eigenschaften von (Fe, Al)\(_{14}\)(Nd, Dy)\(_2\)B-Einkristallen. PhD thesis, Universität Stuttgart (1988)

  37. K.-D. Durst and H. Kronmüller, J. Magn. Magn. Mater. 59, 86 (1986)

Download references

Acknowledgements

This paper is based on results obtained from the future pioneering program “Development of magnetic material technology for high-efficiency motors” commissioned by the New Energy and Industrial Technology Development Organization (NEDO). The authors would like to acknowledge funding support from the Replacement and Original Magnet Engineering Options (ROMEO) Seventh Framework Program (FP7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bance, S., Fischbacher, J., Kovacs, A. et al. Thermal Activation in Permanent Magnets. JOM 67, 1350–1356 (2015). https://doi.org/10.1007/s11837-015-1415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1415-7

Keywords

Navigation