Skip to main content
Log in

Friction Stir Processing of a High Entropy Alloy Al0.1CoCrFeNi

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High entropy alloys are a new class of metallic materials with a potential for use in structural applications. However, most of the studies have focused on microhardness and compressive strength measurements for mechanical properties determination. This study presents the tensile deformation behavior of a single-phase, face-centered cubic Al0.1CoCrFeNi high entropy alloy (HEA). Friction stir processing was carried out to refine the grain size. Scanning electron microscopy and electron backscatter diffraction were carried out for microstructural examination. The grain size of the alloy was on the order of millimeters in the as-received condition. The average grain size after friction stir processing of the alloy was 14 ± 10 micrometers. The mechanical properties were determined through microhardness measurement and mini-tensile tests. The friction stir processed alloy showed a total elongation of ~75% for the mini-tensile sample used and yield strength of 315 MPa. It is an exceptional combination of strength and ductility. Friction stress was determined to be 174 MPa and the Hall–Petch coefficient was 371 MPa (µm)1/2. Such a high value of Hall–Petch coefficient suggests that grain boundary strengthening can be a very effective strengthening mechanism for the HEA Al0.1CoCrFeNi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).

    Article  Google Scholar 

  2. B. Cantor, Entropy 16, 4749 (2014).

    Article  Google Scholar 

  3. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  4. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Entropy 16, 494 (2014).

    Article  Google Scholar 

  5. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).

    Article  Google Scholar 

  6. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  7. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  8. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).

    Article  Google Scholar 

  9. M. Komarasamy, N. Kumar, Z. Tang, R.S. Mishra, and P.K. Liaw, Mater. Res. Lett. 3, 30 (2015).

    Article  Google Scholar 

  10. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P.T. Smith, and C.J. Dawes, U.S. patent WO1993010935 A1 (1993).

  11. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, Scripta Mater. 42, 163 (1999).

    Article  Google Scholar 

  12. R.S. Mishra, P.S. De, and N. Kumar, Friction Stir Welding and Processing: Science and Engineering (New York: Springer, 2014).

    Book  Google Scholar 

  13. N. Kumar and R.S. Mishra, Metall. Mater. Trans. A 44, 934 (2013).

    Article  Google Scholar 

  14. N. Kumar, M. Komarasamy, and R.S. Mishra, J. Mater. Sci. 49, 4202 (2014).

    Article  Google Scholar 

  15. N. Kumar and R.S. Mishra, Mater. Sci. Eng. A 580, 175 (2013).

    Article  Google Scholar 

  16. N. Kumar, D. Choudhuri, R. Banerjee, and R.S. Mishra, Int. J. Plast 68, 77 (2015).

    Article  Google Scholar 

  17. A. Rohatgi, K. Vecchio, and G.T. Gray III, Metall. Mater. Trans. A 32, 135 (2001).

    Article  Google Scholar 

  18. R.W.K. Honeycombe, Plastic Deformation of Metals, 2nd ed. (Maidenhead, UK: Edward Arnold Ltd., 1984).

    Google Scholar 

  19. R. Kapoor, A. Sarkar, J. Singh, I. Samajdar, and D. Raabe, Scripta Mater. 74, 72 (2014).

    Article  Google Scholar 

  20. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, and Z. Cao, Sci. Rep. 4, Article# 6200 (2014).

  21. M.J. Yao, K.G. Pradeep, C.C. Tasan, and D. Raabe, Scripta Mater. 72–73, 5 (2014).

    Article  Google Scholar 

  22. D. Wu, J. Zhang, J.C. Huang, H. Bei, and T.G. Nieh, Scripta Mater. 68, 118 (2013).

    Article  Google Scholar 

  23. W. Yuan, S.K. Panigrahi, J.-Q. Su, and R.S. Mishra, Scripta Mater. 65, 994 (2011).

    Article  Google Scholar 

  24. K. Takeda, N. Nakada, T. Tsuchiyama, and S. Takaki, ISIJ Int. 48, 1122 (2008).

    Article  Google Scholar 

  25. S. Rajasekhara, P. Ferreira, L. Karjalainen, and A. Kyröläinen, Metall. Mater. Trans. A 38, 1202 (2007).

    Article  Google Scholar 

  26. G.E. Dieter, Mechanical Metallurgy, 3rd ed. (New York: McGraw-Hill Inc, 1986).

    Google Scholar 

  27. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Scripta Mater. 68, 526 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Komarasamy, M., Nelaturu, P. et al. Friction Stir Processing of a High Entropy Alloy Al0.1CoCrFeNi. JOM 67, 1007–1013 (2015). https://doi.org/10.1007/s11837-015-1385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1385-9

Keywords

Navigation