Skip to main content

Advertisement

Log in

Progress in Large-Scale Production of Graphene. Part 2: Vapor Methods

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Graphene is critical for applications in electronics, optical devices, thermal management, energy, and biosystems, while at the same time cost-effective and large-scale production of graphene is a challenge. In this regard, vapor phase graphene synthesis is a bottom-up approach, which could be compatible with device industry fabrication methods. Here, we review the state-of-the-art techniques developed for the scalable production of graphene in bottom-up approaches. These mainly include the epitaxial growth and chemical vapor deposition methods. Product quality, structure, and yields for different graphene growth techniques are discussed and specific examples are described. The article also emphasizes promising methods for scalable graphene production but still needing a deeper research understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, and R. Fasel, Nature 466, 470 (2010).

    Article  Google Scholar 

  3. R.S. Edwards and K.S. Coleman, Nanoscale 5, 38 (2013).

    Article  Google Scholar 

  4. A.W. Moore, Nature 221, 1133 (1969).

    Article  Google Scholar 

  5. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari, Mater. Today 15, 564 (2012).

    Article  Google Scholar 

  6. P. Sutter, Nat. Mater. 8, 171 (2009).

    Article  Google Scholar 

  7. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).

    Article  Google Scholar 

  8. H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, and S. Mizuno, ACS Nano 4, 7407 (2010).

    Article  Google Scholar 

  9. A.N. Obraztsov, Nat. Nanotechnol. 4, 212 (2009).

    Article  Google Scholar 

  10. A.E. Karu and M. Beer, J. Appl. Phys. 37, 2179 (1966).

    Article  Google Scholar 

  11. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, and R.S. Ruoff, Science 324, 1312 (2009).

    Article  Google Scholar 

  12. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  13. J. Wu, W. Shi, and N. Chopra, J. Phys. Chem. C 116, 12861 (2012).

    Article  Google Scholar 

  14. N. Chopra, J. Wu, and L. Summerville, Carbon 62, 76 (2013).

    Article  Google Scholar 

  15. Y. Li, N. Chopra, in MRS Proceedings 1700, ed. Y.K. Yap, D.N. Futaba (Materials Research Society, Warrendale, PA, 2014), mrss14-1700-mm08-13, pp. 79–82. doi:10.1557/opl.2014.575.

  16. N. Chopra, L.G. Bachas, and M.R. Knecht, Chem. Mater. 21, 1176 (2009).

    Article  Google Scholar 

  17. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, and T. Seyller, Nat. Mater. 8, 203 (2009).

    Article  Google Scholar 

  18. E. Pallecchi, F. Lafont, V. Cavaliere, F. Schopfer, D. Mailly, W. Poirier, and A. Ouerghi, Sci. Rep. 4, 4558 (2014).

    Article  Google Scholar 

  19. Y. Wang, H. Sun, R. Zhang, S. Yu, and J. Kong, Carbon 53, 245 (2013).

    Article  Google Scholar 

  20. S. Garaj, W. Hubbard, and J.A. Golovchenko, Appl. Phys. Lett. 97, 183103 (2010).

    Article  Google Scholar 

  21. V.Y. Aristov, G. Urbanik, K. Kummer, D.V. Vyalikh, O.V. Molodtsova, A.B. Preobrajenski, and M. Knupfer, Nano Lett. 10, 992 (2010).

    Article  Google Scholar 

  22. Q. Wang, W. Zhang, L. Wang, K. He, X. Ma, and Q. Xue, J. Phys.: Condens. Matter 25, 095002 (2013).

    Google Scholar 

  23. M. Xu, D. Fujita, K. Sagisaka, E. Watanabe, and N. Hanagata, ACS Nano 5, 1522 (2011).

    Article  Google Scholar 

  24. H. Ago, I. Tanaka, Y. Ogawa, R.M. Yunus, M. Tsuji, and H. Hibino, ACS Nano 7, 10825 (2013).

    Article  Google Scholar 

  25. J.H. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim, J.Y. Lim, and D. Whang, Science 344, 286 (2014).

    Article  Google Scholar 

  26. G. Wang, M. Zhang, Y. Zhu, G. Ding, D. Jiang, Q. Guo, and X. Wang, Sci. Rep. 3, 1810 (2013).

    Google Scholar 

  27. I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, and S. Smirnov, Carbon 54, 58 (2013).

    Article  Google Scholar 

  28. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, and J. Kong, Nano Lett. 9, 30 (2008).

    Article  Google Scholar 

  29. Z.Y. Juang, C.Y. Wu, A.Y. Lu, C.Y. Su, K.C. Leou, F.R. Chen, and C.H. Tsai, Carbon 48, 3169 (2010).

    Article  Google Scholar 

  30. H. An, W.J. Lee, and J. Jung, Curr. Appl. Phys. 11, S81 (2011).

    Article  Google Scholar 

  31. S. Chen, P. Bao, L. Xiao, and G. Wang, Carbon 64, 158 (2013).

    Article  Google Scholar 

  32. W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang, G. Xie, and G. Zhang, Nat. Mater. 12, 792 (2013).

    Article  Google Scholar 

  33. S. Tang, H. Wang, Y. Zhang, A. Li, H. Xie, X. Liu, and M. Jiang, Sci. Rep. 3, 2666 (2013).

    Google Scholar 

  34. G.H. Han, J.A. Rodríguez-Manzo, C.W. Lee, N.J. Kybert, M.B. Lerner, Z.J. Qi, and A.C. Johnson, ACS Nano 7, 10129 (2013).

    Article  Google Scholar 

  35. M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park, S.W. Kim, and S. Lee, Adv. Mater. 25, 2746 (2013).

    Article  Google Scholar 

  36. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).

    Article  Google Scholar 

  37. T. Yamada, J. Kim, M. Ishihara, and M. Hasegawa, J. Phys. D Appl. Phys 46, 063001 (2013).

    Article  Google Scholar 

  38. J. Ryu, Y. Kim, D. Won, N. Kim, J.S. Park, E.K. Lee, and S. Cho, ACS Nano 8, 950 (2014).

    Article  Google Scholar 

  39. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett. 8, 2012 (2008).

    Article  Google Scholar 

  40. A. Dato, Z. Lee, K.J. Jeon, R. Erni, V. Radmilovic, T.J. Richardson, and M. Frenklach, Chem. Commun. 40, 6095 (2009).

    Article  Google Scholar 

  41. L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, and H.J. Gao, Adv. Mater. 25, 250 (2013).

    Article  Google Scholar 

  42. N.K. Memon, S.D. Tse, J.F. Al-Sharab, H. Yamaguchi, A.M.B. Goncalves, B.H. Kear, and M. Chhowalla, Carbon 49, 5064 (2011).

    Article  Google Scholar 

  43. Z. Li, H. Zhu, D. Xie, K. Wang, A. Cao, J. Wei, and D. Wu, Chem. Commun. 47, 3520 (2011).

    Article  Google Scholar 

  44. E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu, A.R. Biris, and A.S. Biris, Chem. Commun. 27, 4061 (2009).

    Article  Google Scholar 

  45. A. Nepal, G.P. Singh, B.N. Flanders, and C.M. Sorensen, Nanotechnology 24, 245602 (2013).

    Article  Google Scholar 

  46. J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, and M. Terrones, Nano Lett. 8, 2773 (2008).

    Article  Google Scholar 

  47. L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, and C. Zhou, ACS Nano 4, 2865 (2010).

    Article  Google Scholar 

  48. Y. Lee, S. Bae, H. Jang, S. Jang, S.E. Zhu, S.H. Sim, and J.H. Ahn, Nano Lett. 10, 490 (2010).

    Article  Google Scholar 

  49. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, and B.H. Hong, Nature 457, 706 (2009).

    Article  Google Scholar 

  50. L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nat. Nanotechnol. 5, 321 (2010).

    Article  Google Scholar 

  51. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458, 877 (2009).

    Article  Google Scholar 

  52. V. Sridhar, J.H. Jeon, and I.K. Oh, Carbon 49, 222 (2011).

    Article  Google Scholar 

  53. Z. Xu, H. Li, W. Li, G. Cao, Q. Zhang, K. Li, and J. Wang, Chem. Commun. 47, 1166 (2011).

    Article  Google Scholar 

  54. M. Choucair, P. Thordarson, and J.A. Stride, Nat. Nanotechnol. 4, 30 (2008).

    Article  Google Scholar 

  55. B. Zhang, J. Song, G. Yang, and B. Han, Chem. Sci. 5, 4656 (2014).

    Article  Google Scholar 

  56. Y. Shen and A.C. Lua, Sci. Rep. 3, 3037 (2013).

    Google Scholar 

  57. J.C. Yoon, J.S. Lee, S.I. Kim, K.H. Kim, and J.H. Jang, Sci. Rep. 3, 1788 (2013).

    Google Scholar 

  58. D.G. Matei, N.E. Weber, S. Kurasch, S. Wundrack, M. Woszczyna, M. Grothe, and A. Turchanin, Adv. Mater. 25, 4146 (2013).

    Article  Google Scholar 

  59. B. Shen, D. Lu, W. Zhai, and W. Zheng, J. Mater. Chem. C 1, 50 (2013).

    Article  Google Scholar 

  60. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 190 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by National Science Foundation (Award #: 0925445) and NSF-EPSCoR-RII award. The authors thank the University of Alabama’s Office of sponsored programs and Research Grant Committee Award for additional support. The authors thank Dr. S. Kapoor for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Chopra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chopra, N. Progress in Large-Scale Production of Graphene. Part 2: Vapor Methods. JOM 67, 44–52 (2015). https://doi.org/10.1007/s11837-014-1237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1237-z

Keywords

Navigation