Skip to main content
Log in

Crack Propagation Resistance of α-Al2O3 Reinforced Pulsed Laser-Deposited Hydroxyapatite Coating on 316 Stainless Steel

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) is a widely used bioceramic known for its chemical similarity with that of bone and teeth (Ca/P ratio of 1.67). But, owing to its extreme brittleness, α-Al2O3 is reinforced with HA and processed as a coating via pulsed laser deposition (PLD). Reinforcement of α-Al2O3 (50 wt.%) in HA via PLD on 316L steel substrate has shown modulus increase by 4% and hardness increase by 78%, and an improved adhesion strength of 14.2 N (improvement by 118%). Micro-scratching has shown an increase in the coefficient-of-friction from 0.05 (pure HA) to 0.17 (with 50 wt.% Al2O3) with enhancement in the crack propagation resistance (CPR) up to 4.5 times. Strong adherence of PLD HA–Al2O3 coatings (~4.5 times than that of HA coating) is attributed to efficient release of stored tensile strain energy (~17 × 10−3 J/m2) in HA–Al2O3 composites, making it a potential damage-tolerant bone-replacement surface coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.M. Sun, C.C. Berndt, and K.A. Gross, J. Biomed. Mater. Res. 58, 570 (2001).

    Article  Google Scholar 

  2. X. Chen, N.J. Wu, D.L. Ritums, and A. Ignatiev, Thin Solid Films 342, 61 (1999).

    Article  Google Scholar 

  3. V. Pankov, M. Evstigneev, and R.H. Prince, J. Vac. Sci. Technol. A 20, 430 (2002).

    Article  Google Scholar 

  4. J. Schou, Appl. Surf. Sci. 255, 5191 (2009).

    Article  Google Scholar 

  5. S. Gagliardi, B. Rapone, L. Mosiello, D. Luciani, A. Gerardino, and P. Morales, NanoBioscience. IEEE Trans. Nanobiosci. 6, 242 (2007).

    Article  Google Scholar 

  6. L. Major, J. Morgiel, B. Major, J.M. Lackner, W. Waldhauser, R. Ebner, L. Nistor, and G. Van Tendelco, Surf. Coat. Technol. 200, 6190 (2006).

    Article  Google Scholar 

  7. I. Voiculescua and A.N. Nordin, Biosens. Bioelectr. 33, 1 (2012).

    Article  Google Scholar 

  8. A.E. Wickenden, L.J. Currano, T. Takacs, J. Pulskamp, M. Dubey, S. Hullavarad, and R.D. Vispute, Integr. Ferroelectr. 54, 565 (2003).

    Article  Google Scholar 

  9. M. Katto, M. Nakamura, T. Tanaka, and T. Nakayama, Appl. Surf. Sci. 197–198, 768 (2002).

    Article  Google Scholar 

  10. D.M. Liu, Q. Yang, and T. Troczynski, Biomaterials 23, 691 (2002).

    Article  Google Scholar 

  11. B. Mavis and A.C. Tas, J. Am. Cer. Soc. 83, 989 (2000).

    Article  Google Scholar 

  12. M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, and J.H. Evans, J. Sol Gel Sci. Technol. 21, 39 (2001).

    Article  Google Scholar 

  13. P. Jain, T. Mandal, P. Prakash, A. Garg, and K. Balani, J. Coat. Technol. Res. 10, 263 (2013).

    Article  Google Scholar 

  14. K. Balani, D. Lahiri, A.K. Keshri, S.R. Bakshi, J.E. Tercero, and A. Agarwal, JOM 61(9), 63 (2009).

    Article  Google Scholar 

  15. R.B. Heimann, Surf. Coat. Technol. 201, 2012 (2006).

    Article  Google Scholar 

  16. F.J.G. Sanz, M.B. Mayor, J.L. Arias, J. Pou, B. León, and M. Pérez-Amor, J. Mater. Sci. Mater. Med. 8, 861 (1997).

    Article  Google Scholar 

  17. K. Balani, S.R. Bakshi, Y. Chen, T. Laha, and A. Agarwal, J. Nanosci. Nanotechnol. 7, 3553 (2007).

    Article  Google Scholar 

  18. S. Kalmodia, S. Goenka, T. Laha, D. Lahiri, B. Basu, and K. Balani, Mater. Sci. Eng. C 30, 1162 (2010).

    Article  Google Scholar 

  19. F. Kay, Dent. Clin. N. Am. 36, 1 (1992).

    Google Scholar 

  20. J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, and A. Agarwal, Mater. Sci. Eng. C 29, 2195 (2009).

    Article  Google Scholar 

  21. W. Suchaneka and M. Yoshimuraa, J. Mater. Res. 13, 94 (1998).

    Article  Google Scholar 

  22. K. Balani and A. Agarwal, Surf. Coat. Technol. 202, 4270 (2008).

    Article  Google Scholar 

  23. B. Kasemo and J. Gold, Adv. Dent. Res. 13, 8 (1999).

    Google Scholar 

  24. X. Bai, K. More, C.M. Rouleau, and A. Rabiei, Acta Biomater. 6, 2264 (2010).

    Article  Google Scholar 

  25. M.A.F. Afzal, P. Kesarwani, K. Madhav Reddy, S. Kalmodia, B. Basu, and K. Balani, Mater. Sci. Eng. C 32, 1164 (2012).

    Article  Google Scholar 

  26. K. Chen, Biomedical Engineering and Informatics (Piscataway, NJ: IEEE, 2010), pp. 1704–1706.

    Google Scholar 

  27. M.A.F. Afzal, S. Kalmodia, P. Kesarwani, B. Basu, and K. Balani, J. Biomater. Appl. 27, 967 (2013).

    Article  Google Scholar 

  28. A. Kumar, S. Dhara, K. Biswas, and B. Basu, J. Biomed. Mater. Res. B 101, 223 (2013).

    Article  Google Scholar 

  29. S. Paital, K. Balani, A. Agarwal, and N.B. Dahotre, J. Biomed. Mater 4, 015009 (2009).

    Article  Google Scholar 

  30. A. Kurella and N.B. Dahotre, Acta Biomater. 2, 677 (2006).

    Article  Google Scholar 

  31. J.L. Arias, F.J. Garcia-Sanz, M.B. Mayor, S. Chiussi, J. Pou, B. Leon, and M. Perez-Amor, Biomaterials 19, 883 (1998).

    Article  Google Scholar 

  32. C.M. Cotell, D.B. Chriseya, and K.S. Grabowskia, MRS Symposium, Vol. 252 (Pittsburgh, PA: MRS, 1991), 3. doi:10.1557/PROC-252-3.

  33. H. Katayama, M. Katto, and T. Nakayama, Surf. Coat. Technol. 204, 135 (2009).

    Article  Google Scholar 

  34. H.T. Zeng and W.F. Lacefield, Biomaterials 21, 23 (2000).

    Article  Google Scholar 

  35. S. Ariharan, A. Gupta, A. Keshri, A. Agarwal, and K. Balani, Nanosci. Nanotechnol. Lett. 4, 323 (2012).

    Article  Google Scholar 

  36. K. Balani and A. Agarwala, J. Appl. Phys. 104, 063517 (2008).

    Article  Google Scholar 

  37. Y. Chen, K. Balani, and A. Agarwal, Appl. Phys. Lett. 91, 031903 (2007).

    Article  Google Scholar 

  38. S. Nath, R. Tripathi, and B. Basu, Mater. Sci. Eng. C 29, 97 (2009).

    Article  Google Scholar 

  39. A.C.F. Cripps, Vacuum 58, 569 (2000).

    Article  Google Scholar 

  40. A.C.F. Cripps, Nanoindentation (New York: Springer, 2004).

    Book  Google Scholar 

  41. S.R. Bakshi, K. Balani, T. Laha, J. Tercero, and A. Agarwal, JOM 59, 50 (2007).

    Article  Google Scholar 

  42. K. Balani, P.R. Patel, A.K. Keshri, D. Lahiri, and A. Agarwal, J. Mech. Behav. Biomed. Mater. 4, 1440 (2011).

    Article  Google Scholar 

  43. K. Balani, F.C. Brito, K. Kos, and A. Agarwal, J. R. Soc. Interface 6, 1097 (2009).

    Article  Google Scholar 

  44. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  45. G.M. Pharr, Mater. Sci. Eng. A 253, 151 (1998).

    Article  Google Scholar 

  46. F. Rena, E.D. Case, A. Morrison, M. Tafesse, and M.J. Baumann, Philo. Mag. 89, 1163 (2009).

    Article  Google Scholar 

  47. X. Chen, J. Yan, and A.M. Karlsson, Mater. Sci. Eng. A 416, 139 (2006).

    Article  Google Scholar 

  48. J. Musil and M. Jirout, Surf. Coat. Tech. 201, 5148 (2007).

    Article  Google Scholar 

  49. J.M.F. Pradas, L. Cleires, G. Sardin, and J.L. Morenza, Biomaterials 23, 1989 (2002).

    Article  Google Scholar 

  50. C.M. Cotell, D.B. Chrisey, K.S. Grabowski, J.A. Sprague, and C.R. Gossett, J. Appl. Biomater. 3, 87 (1992).

    Article  Google Scholar 

  51. C.P. Klein, P. Patka, J.G. Wolke, J.M. de Blieck-Hogervorst, and K. de Groot, Biomaterials 15, 146 (1994).

    Article  Google Scholar 

  52. S.R. Bakshi, K. Balani, and A. Agarwal, J. Am. Ceram. Soc. 91, 942 (2008).

    Article  Google Scholar 

  53. Y.K. Jun, W.H. Kim, O.K. Kweon, and S.H. Hong, Biomaterials 24, 3731 (2003).

    Article  Google Scholar 

  54. A. Rishabh, M.R. Joshi, and K. Balani, J. Appl. Phy. 107, 123532 (2010).

    Article  Google Scholar 

  55. S. Zhang, D. Sun, Y.-Q. Fu, and H.-J. Du, Thin Solid Films 447–448, 462 (2004).

    Article  Google Scholar 

  56. J.L. Arias, M.B. Mayor, J. Pou, Y. Leng, B. Leon, and M. Perez-Amor, Biomaterials 24, 3403 (2003).

    Article  Google Scholar 

  57. J.W. Hutchinson and Z. Suo, Advances in Applied Mechanics, Vol. 29, ed. J.W. Hutchinson and T.Y. Wu (New York: Academic Press, 1992), p. 63.

    Google Scholar 

  58. H. Tan and W. Yang, Mech. Mater. 30, 111 (1998).

    Article  Google Scholar 

  59. A. Nakahira, M. Tamai, S. Miki, and G. Pezzotti, J. Mater. Sci. 37, 4425 (2002).

    Article  Google Scholar 

  60. Q. Song, C. Wang, and S. Wen, Philos. Mag. A 77, 1309 (1998).

    Article  Google Scholar 

  61. B.M. Malyshev and R.L. Salganik, Int. J. Fract. Mech. 5, 114 (1965).

    Google Scholar 

  62. Y. Chen, K. Balani, and A. Agarwala, Appl. Phys. Lett. 92, 011916 (2008).

    Article  Google Scholar 

  63. A.A. Volinsky, J.B. Vella, and W.W. Gerberich, Thin Solid Films 429, 201 (2003).

    Article  Google Scholar 

  64. A.G. Evans, M.D. Drory, and M.S. Hu, J. Mater. Res. 3, 1043 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

S. B. and S. K. P. thank the Director, CSIR-IMMT Bhubaneswar for giving permission to publish this work. K. B. acknowledges funding from MHRD, Govt. of India. Prof. Ashish Garg, IIT Kanpur, is acknowledged for extending the pulsed laser deposition facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kantesh Balani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, S., Gupta, A., Pradhan, S.K. et al. Crack Propagation Resistance of α-Al2O3 Reinforced Pulsed Laser-Deposited Hydroxyapatite Coating on 316 Stainless Steel. JOM 66, 2095–2107 (2014). https://doi.org/10.1007/s11837-014-1152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1152-3

Keywords

Navigation