Skip to main content
Log in

Improved Thermal Conductivity in Carbon Nanotubes-Reinforced Syntactic Foam Achieved by a New Dispersing Technique

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Syntactic foams are composite materials in which the matrix phase is reinforced with hollow micro-particles. Traditionally, syntactic foams are used for many high strength applications and as insulating materials. However, for applications demanding better heat dissipation, such as thermal management of electronic packaging, conductive fillers need to be added to syntactic foam. Carbon nanotubes (CNTs), although extremely conductive, have issues of agglomeration in the matrix. In this research, CNT-reinforced syntactic foam was developed based on our approach through which CNTs were dispersed throughout the matrix by growing them on the surface of glass microballoons. The thermal conductivity of nanotube-grown syntactic foam was tested with a Flashline® thermal analyzer. For comparison purposes, plain and nanotube-mixed syntactic foams were also fabricated and tested. Nanotube-grown microballoons improved the thermal conductivity of syntactic foam by 86% and 92% (at 50°C) compared to plain and nanotube-mixed syntactic foams, respectively. The improved thermal conductivity as well as the microstructural analysis proved the effectiveness of this approach for dispersing the carbon nanotubes in syntactic foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Gupta and E. Woldesenbet, Compos. Struct. 61, 311 (2003).

    Article  Google Scholar 

  2. E. Woldesenbet, N. Gupta, and H.D. Jerro, J. Sandw. Struct. Mater. 7, 95 (2005).

    Article  Google Scholar 

  3. A.H. Landrock, Handbook of Plastic Foams: Types, Properties, Manufacture and Applications (Elsevier, 1995), pp. 147–163.

  4. N. Gupta, E. Woldesenbet, and S. Sankaran, J. Sandw. Struct. Mater. 4, 249 (2002).

    Article  Google Scholar 

  5. E. Zegeye, A.K. Ghamsari, and E. Woldesenbet, Compos. B 60, 268 (2014).

    Article  Google Scholar 

  6. A. Ghamsari, E. Zegeye, and E. Woldesenbet, J. Compos. Mater. (2013).

  7. E.F. Zegeye and E. Woldesenbet, J. Reinf. Plast. Compos. 31, 1045 (2012).

    Article  Google Scholar 

  8. A.K. Ghamsari, S. Wicker, and E. Woldesenbet, Compos. Part B (2014).

  9. C. Zweben, JOM 50(6), 47 (1998).

    Article  Google Scholar 

  10. E.P. Scott and J.V. Beck, J. Compos. Mater. 26, 132 (1992).

    Article  Google Scholar 

  11. Y. Agari, A. Ueda, and S. Nagai, J. Appl. Polym. Sci. 43, 1117 (1991).

    Article  Google Scholar 

  12. F. Gojny, M. Wichmann, U. Köpke, B. Fiedler, and K. Schulte, Compos. Sci. Technol. 64, 2363 (2004).

    Article  Google Scholar 

  13. L. Schadler, S. Giannaris, and P. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).

    Article  Google Scholar 

  14. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, Appl. Phys. Lett. 80, 2767 (2002).

    Article  Google Scholar 

  15. E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, and K. Dahmen, J. Appl. Phys. 94, 6034 (2003).

    Article  Google Scholar 

  16. F.H. Gojny, M.H. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, and K. Schulte, Polymer 47 (2006).

  17. A. Moisala, Q. Li, I.A. Kinloch, and A.H. Windle, Compos. Sci. Technol. 66, 1285 (2006).

    Article  Google Scholar 

  18. J. Gao, F. Tang, and J. Ren, Surf. Coat. Technol. 200, 2249 (2005).

    Article  Google Scholar 

  19. E. Zegeye, Y. Jin, and E. Woldesenbet, Mater. Lett. 68, 490 (2012).

    Article  Google Scholar 

  20. R.T.K. Baker, P.S. Harris, R.B. Thomas, and R.J. Waite, J. Catal. 30, 86 (1973).

    Article  Google Scholar 

  21. P. Bhat, Thermal Characterization of Plain and Carbon Nanotube Reinforced Syntactic Foams (Master of Science, Louisiana State University, 2009)

  22. C.J. Lee, J. Park, S. Han, and J. Ihm, Chem. Phys. Lett. 337, 398 (2001).

    Article  Google Scholar 

  23. J.A. Eastman, S. Phillpot, S. Choi, and P. Keblinski, Annu. Rev. Mater. Res. 34, 219 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude toward National Science Foundation (award #0932300) for supporting Next Generation Composite Crest Center in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ghamsari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, P., Zegeye, E., Ghamsari, A.K. et al. Improved Thermal Conductivity in Carbon Nanotubes-Reinforced Syntactic Foam Achieved by a New Dispersing Technique. JOM 67, 2848–2854 (2015). https://doi.org/10.1007/s11837-014-1151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1151-4

Keywords

Navigation