Skip to main content
Log in

Deformation Behavior of the Percolating Eutectic Intermetallic in HPDC and Squeeze-Cast Mg Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The structural compliance of the spatially interconnected intermetallic network in a squeeze-cast MRI230D alloy was determined using focused ion beam (FIB) data and finite element (FE) modeling, and compared with data for a high-pressure die-cast AZ91D and three binary Mg-RE alloys from the existing literature. The respective elastic responses were sorted out into two characteristic behaviors: for eutectic volume fractions less than ~22% the behavior was akin to that of highly compliant, bending-dominated structures, whereas for larger fractions, it reproduced that of structurally efficient, stretch-dominated microtruss structures. In all cases, the contribution from the interconnected network added to the total strength of the alloy an amount comparable with the strengthening expected from a similar volume fraction of dispersed particles. Being more compliant, the bending-dominated structures appeared less prone to developing damage by cracking at low strains than the stretch dominated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. RE denotes a Ce-rich misch-metal containing 51.7 mass% Ce, 23.1 mass% La, 18.6 mass% Nd, and 6.5 mass% Pr.

  2. In more practical terms, the modeling assumes that the eutectic intermetallic constrains the eutectic α-Mg in such a way that both composite’s components remain elastic until the intermetallic cracks at 0.7% strain.

  3. Because the reinforcing intermetallic or the whole eutectics are assumed either as a solid ceramic skeleton (AZ91D) or as a long fiber composite (other alloys), microstructural parameters such as grains size are not considered. There would be a grain size effect in the case of the whole eutectics through a Hall–Petch effect associated with the lamellar spacing25 but only for plastic strains, which are beyond those considered for the current modeling.

  4. Because the modeling concentrates on the reinforcing by the network, the differences in the alloys chemical composition are reflected only in the elastic constants of the intermetallics, as given by the E i values in Table IV and are made evident (through Eq. 4) by the slope of the lines through the origin in Fig. 4. There is some effect of E i (through Eq. 5) on the dispersion-hardening component as well. Solid-solution effects on the overall strength of the alloys are not considered, but it should be kept in mind that they are solute specific and can be quite significant, see for example Ref. 6.

  5. Recent FEM modeling and experiments by Challis et al.31on Ti alloy scaffolds, created using selective laser melting, resulted in stiffness values (see their Fig. 3) that closely match the current alloys’ E 3Dp values of Table V for comparable volume fractions.

  6. The Voigt’s bound assumes all microtrusses aligned parallel to the stress axis (see diagrams in Table VI). In the SD configuration, only 1/3 of the interconnected branches are loaded in tension, with the rest orientated across the tensile axis. In the BD configuration, loads are transmitted exclusively through elastic bending of the microtrusses.32

References

  1. C.H. Cáceres, W.J. Poole, A.L. Bowles, and C.J. Davidson, Mater. Sci. Eng. A 402, 269 (2005).

    Article  Google Scholar 

  2. K.V. Yang, A.V. Nagasekhar, C.H. Caceres, and M.A. Easton, Mater. Sci. Eng. A 542, 49 (2012).

    Article  Google Scholar 

  3. D. Amberger, P. Eisenlohr, and M. Göken, Acta Mater. 60, 2277 (2012).

    Article  Google Scholar 

  4. B.S. Shin, J.W. Kwon, and D.H. Bae, Met. Mater. Int. 15, 203 (2009).

    Article  Google Scholar 

  5. A.V. Nagasekhar, C.H. Cáceres, and C. Kong, Mater. Charact. 61, 1035 (2010).

    Article  Google Scholar 

  6. B. Zhang, S. Gavras, A.V. Nagasekhar, C.H. Caceres, and M.A. Easton, Metall. Mater. Trans. A 45, 4386 (2014).

    Article  Google Scholar 

  7. B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Caceres, and M. Easton, Mater. Sci. Eng. A 599, 204 (2014).

    Article  Google Scholar 

  8. B. Zhang, A.V. Nagasekhar, T. Sivarupan, and C.H. Caceres, Adv. Eng. Mater. 15, 1059 (2013).

    Article  Google Scholar 

  9. A.V. Nagasekhar, C.H. Cáceres, and C. Kong, J. Phys.: Conf. Series 240 (2010).

  10. A.V. Nagasekhar, M.A. Easton, and C.H. Cáceres, Adv. Eng. Mater. 11, 912 (2009).

    Article  Google Scholar 

  11. T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, and J.F. Nie, Intermetallics 17, 481 (2009).

    Article  Google Scholar 

  12. Y. Terada, N. Ishimatsu, Y. Mori, and T. Sato, Mater. Trans. (JIM) 46, 145 (2005).

    Article  Google Scholar 

  13. B. Cantor and G.A. Chadwick, J. Mater. Sci. 10, 578 (1975).

    Article  Google Scholar 

  14. M. Sahoo and R.W. Smith, Metal Sci. 9, 217 (1975).

    Article  Google Scholar 

  15. D. Stalling, M. Westerhoff, and H.-C. Hege, Visualization and Mathematics (Berlin: Springer, 1997).

    Google Scholar 

  16. K. Ozturk, Y. Zhong, A.A. Luo, and Z. Liu, JOM 40 (2003).

  17. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method (Columbus: McGraw-Hill Book Company, 1989).

    Google Scholar 

  18. D. Hull, An Introduction to Composite Materials (Cambridge: Cambridge University Press, 1981).

    Google Scholar 

  19. C.H. Cáceres and P. Lukác, Phil. Mag. A 88, 977 (2008).

    Article  Google Scholar 

  20. N. Wang, Y. Wei-Yang, B.-Y. Tang, L.-M. Peng, and W.-J. Ding, J. Phys. D 41, 195408 (2008).

    Article  Google Scholar 

  21. H. Zhang and S. Wang, Acta Metall. Sinica 48, 889 (2012).

    Article  Google Scholar 

  22. T. Sumitomo, C.H. Cáceres, and M. Veidt, J. Light Metals 2, 49 (2002).

    Article  Google Scholar 

  23. H. Anton and P.C. Schmidt, Intermetallics 5, 449 (1997).

    Article  Google Scholar 

  24. J. Wrobel, L.G. HectorJr, W. Wolf, S.L. Shang, Z.K. Liu, and K.J. Kurzydlowski, J. Alloy Compd. 512, 296 (2012).

    Article  Google Scholar 

  25. R.W. Armstrong, The Yield and Flow Stress Dependence on Polycrystal Grain Size, ed. T.N. Baker (London: Applied Science Publishers, 1983), pp. 1–31.

    Google Scholar 

  26. M.F. Ashby and Y.J.M. Brechet, Acta Mater. 51, 5801 (2003).

    Article  Google Scholar 

  27. L.J. Gibson and M.F. Ashby, Proc. R. Soc. Lond. A 382, 43 (1982).

    Article  Google Scholar 

  28. S.K. Maiti, L.J. Gibson, and M.F. Ashby, Acta Metall. 32, 1963 (1984).

    Article  Google Scholar 

  29. G. Bruno, A.M. Efremov, A.N. Levandovskyi, and B. Clausen, J. Mater. Sci. 46, 161 (2011).

    Article  Google Scholar 

  30. A.P. Roberts and E.J. Garboczi, J. Am. Ceram. Soc. 83, 3041 (2000).

    Article  Google Scholar 

  31. V.J. Challis, X. Xu, L.C. Zhang, A.P. Roberts, J.F. Grotowski, and T.B. Sercombe, Mater. Des. 63, 783 (2014).

    Article  Google Scholar 

  32. V.S. Deshpande, M.F. Ashby, and N.A. Fleck, Acta Mater. 49, 1035 (2001).

    Article  Google Scholar 

  33. C.H. Cáceres, J.R. Griffiths, and P. Reiner, Acta Mater. 44, 15 (1996).

    Article  Google Scholar 

  34. C.H. Cáceres, Alum. Trans. 1, 1 (1999).

    Google Scholar 

  35. Y. Brechet, J.D. Embury, S. Tao, and L. Luo, Acta Metall. Mater. 39, 1781 (1991).

    Article  Google Scholar 

  36. C.H. Cáceres and J.R. Griffiths, Acta Mater. 44, 25 (1996).

    Article  Google Scholar 

  37. P.J. Withers, W.M. Stobbs, and O.B. Pedersen, Acta Metall. 37, 3061 (1989).

    Article  Google Scholar 

  38. L.M. Brown and W.M. Stobbs, Phil. Mag. 23, 1185 (1971).

    Article  Google Scholar 

  39. H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Automotive Applications (New York: Springer, 2006).

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dorothea Amberger (Universitat Erlangen-Nurnberg) for the squeeze-cast plate used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yang, K.V., Nagasekhar, A.V. et al. Deformation Behavior of the Percolating Eutectic Intermetallic in HPDC and Squeeze-Cast Mg Alloys. JOM 66, 2086–2094 (2014). https://doi.org/10.1007/s11837-014-1147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1147-0

Keywords

Navigation