Skip to main content
Log in

Temperature Effects on Deformation and Serration Behavior of High-Entropy Alloys (HEAs)

  • Published:
JOM Aims and scope Submit manuscript

An Erratum to this article was published on 18 November 2014

Abstract

Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress drops and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. The model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  3. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004).

    Article  Google Scholar 

  4. S. Varalakshmi, M. Kamaraj, and B.S. Murty, Mater. Sci. Eng. A 527, 1027 (2010).

    Article  Google Scholar 

  5. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Intermetallics 15, 357 (2007).

    Article  Google Scholar 

  6. W.H. Wu, C.C. Yang, and J.W. Yeh, Ann. Chim. Sci. Mater. 31, 737 (2006).

    Article  Google Scholar 

  7. C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, and H.C. Shih, J. Electrochem. Soc. 154, C424 (2007).

    Article  Google Scholar 

  8. C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, and H.C. Shih, Thin Solid Films 517, 1301 (2008).

    Article  Google Scholar 

  9. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, Sci. Rep. 3, 1455 (2013).

    Google Scholar 

  10. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  11. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  12. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Mater. Sci. Eng. A 533, 107 (2012).

    Article  Google Scholar 

  13. D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, and O.N. Senkov, JOM 65, 1815 (2013).

    Article  Google Scholar 

  14. S.Y. Chen, X. Yang, K. Dahmen, P.K. Liaw, and Y. Zhang, Entropy 16, 870 (2014).

    Article  Google Scholar 

  15. Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T.T. Zuo, Y. Zhang, Z. Lu, Y.Q. Cheng, Y.W. Zhang, K.A. Dahmen, P.K. Liaw, and T. Egami, JOM 65, 1848 (2013).

    Article  Google Scholar 

  16. Z. Tang, L. Huang, W. He, and P. Liaw, Entropy 16, 895 (2014).

    Article  Google Scholar 

  17. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).

    Article  Google Scholar 

  18. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).

    Article  Google Scholar 

  19. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mater. Sci. Eng. A 565, 51 (2013).

    Article  Google Scholar 

  20. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Adv. Eng. Mater. 6, 74 (2004).

    Article  Google Scholar 

  21. O.N. Senkov and C.F. Woodward, Mater. Sci. Eng. A 529, 311 (2011).

    Article  Google Scholar 

  22. O.N. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, and C. Woodward, J. Mater. Sci. 47, 4062 (2012).

    Article  Google Scholar 

  23. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).

    Article  Google Scholar 

  24. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  25. X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).

    Article  Google Scholar 

  26. Y.J. Zhou, Y. Zhang, F.J. Wang, and G.L. Chen, Appl. Phys. Lett. 92, 241917 (2008).

    Article  Google Scholar 

  27. X. Yang, Y. Zhang, and P.K. Liaw, Procedia Eng. 36, 292 (2012).

    Article  Google Scholar 

  28. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, and H.C. Shih, Corros. Sci. 50, 2053 (2008).

    Article  Google Scholar 

  29. C. Zhu, Z.P. Lu, and T.G. Nieh, Acta Mater. 61, 2993 (2013).

    Article  Google Scholar 

  30. W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K. Liaw, and T. Egami, Metall. Mater. Trans. A 44A, 1994 (2013).

    Article  Google Scholar 

  31. O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Acta Mater. 61, 1545 (2013).

    Article  Google Scholar 

  32. T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Int. J. Miner. Metall. Mater. 20, 549 (2013).

    Article  Google Scholar 

  33. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).

    Article  Google Scholar 

  34. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  35. B.A. Welk, R.E.A. Williams, G.B. Viswanathan, M.A. Gibson, P.K. Liaw, and H.L. Fraser, Ultramicroscopy 134, 193 (2013).

    Article  Google Scholar 

  36. O. Senkov, F. Zhang, and J. Miller, Entropy 15, 3796 (2013).

    Article  Google Scholar 

  37. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, M.K. Miller, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, unpublished work (2014).

  38. M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Muñoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, and E. Karapetrova, Appl. Phys. Lett. 100, 251907 (2012).

    Article  Google Scholar 

  39. L.P. Kubin, K. Chihab, and Y. Estrin, Acta Metall. 36, 2707 (1988).

    Article  Google Scholar 

  40. J.M. Robinson and M.P. Shaw, Int. Mater. Rev. 39, 113 (1994).

    Article  Google Scholar 

  41. P. Hähner, Mater. Sci. Eng. A 207, 208 (1996).

    Article  Google Scholar 

  42. O.N. Senkov and J.J. Jonas, Metall. Mater. Trans. A 27, 1877 (1996).

    Article  Google Scholar 

  43. P. Rodriguez, Bull. Mater. Sci. 6, 653 (1984).

    Article  Google Scholar 

  44. K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).

    Article  Google Scholar 

  45. N. Friedman, A.T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, and K.A. Dahmen, Phys. Rev. Lett. 109, 095507 (2012).

    Article  Google Scholar 

  46. J. Antonaglia, X. Xie, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, and K.A. Dahmen, Sci. Rep. 4, 4382 (2014).

    Article  Google Scholar 

  47. K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Nat. Phys. 7, 554 (2011).

    Article  Google Scholar 

  48. M. Zaiser, Adv. Phys. 55, 185 (2006).

    Article  Google Scholar 

  49. P.Y. Chan, G. Tsekenis, J. Dantzig, K.A. Dahmen, and N. Goldenfeld, Phys. Rev. Lett. 105, 015502 (2010).

    Article  Google Scholar 

  50. M.A. Laktionova, E.D. Tabchnikova, Z. Tang, and P.K. Liaw, Low Temp. Phys. 39, 630 (2013).

  51. F.H. Dalla Torre, D. Klaumünzer, R. Maaß, and J.F. Löffler, Acta Mater. 58, 3742 (2010).

    Article  Google Scholar 

  52. J.W. Qiao, Y. Zhang, and P.K. Liaw, Intermetallics 18, 2057 (2010).

    Article  Google Scholar 

  53. A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. Lond. A 62, 49 (1949).

    Article  Google Scholar 

  54. C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, J. Alloys Compd. 486, 427 (2009).

    Article  Google Scholar 

  55. D. Wu, R.S. Chen, and E.H. Han, Mater. Sci. Eng. A 532, 267 (2012).

    Article  Google Scholar 

  56. T. Sakthivel, K. Laha, M. Nandagopal, K.S. Chandravathi, P. Parameswaran, S. Panneer Selvi, M.D. Mathew, and S.K. Mannan, Mater. Sci. Eng. A 534, 580 (2012).

    Article  Google Scholar 

  57. V. Shankar, M. Valsan, K.B.S. Rao, and S.L. Mannan, Metall. Mater. Trans. A 35, 3129 (2004).

    Article  Google Scholar 

  58. A.H. Clausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Mater. Sci. Eng. A 364, 260 (2004).

    Article  Google Scholar 

  59. S. Venkadesan, C. Phaniraj, P.V. Sivaprasad, and P. Rodriguez, Acta Metall. Mater. 40, 569 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

X.X., Z.T., and P.K.L. appreciate the financial support from the U.S. National Science Foundation (DMR-0909037, CMMI-0900271, and CMMI-1100080), the Department of Energy (DOE), Office of Nuclear Energy’s Nuclear Energy University Program (NEUP) 00119262, and the DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855) with C. Huber, C.V. Cooper, D. Finotello, A. Ardell, E. Taleff, V. Cedro, R.O. Jensen, L. Tan, and S. Lesica as contract monitors. K.A.D. and J.A. gratefully acknowledge the NSF Grants DMR-1005209 and DMS-1069224 with D. Hess and J. Curry as contract monitors. K.A.D., X.X., and P.K.L. thank DOE for the support through project FE0011194 with the project manager S. Markovich. Y.Z. appreciates the financial support from the National Natural Science Foundation of China (Nos. 51010001 and 51001009), 111 Project (B07003), and the Program for Changjiang Scholars and the Innovative Research Team of the University. M.C.G. and P.K.L. very much appreciate the support from the U.S. Army Research Office project (W911NF-13-1-0438) with the program manager S.N. Mathaudhu. Work of ONS was supported through the Air Force on-site contract FA8650-10-D-5226 conducted by UES, Inc., Dayton, Ohio. All authors are grateful to the suggestions and comments of Dr. D.B. Miracle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Dahmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonaglia, J., Xie, X., Tang, Z. et al. Temperature Effects on Deformation and Serration Behavior of High-Entropy Alloys (HEAs). JOM 66, 2002–2008 (2014). https://doi.org/10.1007/s11837-014-1130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1130-9

Keywords

Navigation