Skip to main content
Log in

Bulk-Forming Simulation of Bimetallic Watchcase Components

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article presents a study of the effects of process parameters in bulk-forming bimetallic watchcase components using finite-element (FE) simulation. This study aimed to determine the suitable forming temperature T and ram speed S for attaining the complete die filling of bimetals. A complicated watchcase component made of 3-mm-thick AISI 316L stainless steel (SS316L) and 6-mm-thick 6063 aluminum alloy (AA6063) was used as the example. The processes were simulated with T of 400°C, 500°C, 600°C, 700°C, 800°C, and 900°C and S of 20 mm/s, 40 mm/s, and 60 mm/s. Although the AA6063 was not heated in the beginning, it flowed faster than the SS316L during the process, and hence, the incomplete die filling was found mainly in the SS316L region. To avoid the incomplete die filling and strengthen the intermetallic bond between two dissimilar metals, the T of 900°C was suggested. The S of 40 mm/s was recommended also because this could save much forming energy and prevent the damage of tools. The experimental verification was carried out under process conditions that were employed in the simulations. An infrared thermal imaging camera and a 300-ton mechanical press were used to monitor the T and testify the bulk-forming operation, respectively. The data acquired from the experiments, on average, agreed strongly with those predicted by the simulations. On the basis of the results in this study, engineers can gain a better understanding of bulk-forming bimetallic components and be able to determine the T and S efficiently for similar processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Groche and D. Fritsche, Int. J. Mach. Tool. Manuf. 46, 1261 (2006).

    Article  Google Scholar 

  2. P. Groche, D. Fritsche, E.A. Tekkaya, J.M. Allwood, G. Hirt, and R. Neugebauer, CIRP Ann-Manuf. Technol. 56, 635 (2007).

    Article  Google Scholar 

  3. B.A. Behrens, E. Doege, S. Reinsch, K. Telkamp, H. Daehndel, and A. Specker, J. Mater. Process. Tech. 185, 139 (2007).

    Article  Google Scholar 

  4. S.Z. Sapozhnikov, L.A. Perezhogin, and V.N. Kipriyanov, Met. Sci. Heat Treat. 24, 734 (1982).

    Article  Google Scholar 

  5. D. Taylor and J. Pan, Int. J. Mater. Prod. Tech. 16, 430 (2001).

    Article  Google Scholar 

  6. O. Yilmaz and H. Çelik, J. Mater. Process. Tech. 141, 67 (2003).

    Article  Google Scholar 

  7. M. Şimşir, L.C. Kumruoğlu, and A. Özer, Mater. Des. 30, 264 (2009).

    Article  Google Scholar 

  8. A.M. Torbati, R.M. Miranda, L. Quintino, S. Williams, and D. Yapp, J. Mater. Process. Tech. 211, 1112 (2011).

    Article  Google Scholar 

  9. S. Yildirim and M.H. Kelestemur, Mater. Lett. 59, 1134 (2005).

    Article  Google Scholar 

  10. K.K. Zhang, Y.L. Wang, H.X. Shi, H. Yu, and S. Liu, Mater. Sci. Eng. A 499, 97 (2009).

    Article  Google Scholar 

  11. N. Kahraman, B. Gülenç, and F. Findik, J. Mater. Process. Tech. 169, 127 (2005).

    Article  Google Scholar 

  12. S.A.A. Akbari Mousavi and P. Farhadi Sartangi, Mater. Des. 30, 459 (2009).

    Article  Google Scholar 

  13. T. Altan, S.I. Oh, and H.L. Gegel, Metal Forming: Fundamentals and Applications (Materials Park, OH: ASM, 1983).

    Google Scholar 

  14. R. Neugebauer, K.D. Bouzakis, B. Denkena, F. Klocke, A. Sterzing, A.E. Tekkaya, and R. Wertheim, CIRP Ann-Manuf. Technol. 60, 627 (2011).

    Article  Google Scholar 

  15. K. Osakada, K.K. Morib, T. Altan, and P. Groched, CIRP Ann-Manuf. Technol. 60, 651 (2011).

    Article  Google Scholar 

  16. P. Groche, J. Stahlmann, J. Hartel, and M. Köhler, Tribol. Int. 42, 1173 (2009).

    Article  Google Scholar 

  17. L. Manuel, J. Stahlmann, and P. Groche (Paper presented at Metal Forming 2012. Proceedings of 14th International Conference on Metal Forming 2012, Kraków, Poland, 2012).

  18. A. Ahmad, and P. Groche, (Paper presented at NUMIFORM. Proceedings of 10th International Conference on Numerical Methods in Industrial Forming Processes, Pohang, Republic of Korea, 2010).

  19. S. Berski, H. Dyja, G. Banaszek, and M. Janik, J. Mater. Process. Tech. 153–154, 583 (2004).

    Article  Google Scholar 

  20. S. Berski, H. Dyja, A. Maranda, J. Nowaczewski, and G. Banaszek, J. Mater. Process. Tech. 177, 582 (2006).

    Article  Google Scholar 

  21. S. Wohletz, M. Özel, and P. Groche, (Paper presented at New Developments in Forging Technology. Proceedings of International Conference on New Developments in Forging Technology, Stuttgart, 2013).

  22. N.R. Chitkara and A. Aleem, Int. J. Mech. Sci. 43, 2833 (2001).

    Article  MATH  Google Scholar 

  23. N.R. Chitkara and A. Aleem, Int. J. Mech. Sci. 43, 2857 (2001).

    Article  MATH  Google Scholar 

  24. B.V. Krishna, P. Venugopal, and K. Prasad Rao, Mater. Sci. Eng. A. 407, 77 (2005).

    Article  Google Scholar 

  25. I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock, JOM 64, 1192 (2012).

    Article  Google Scholar 

  26. C.A. Bronkhorst, J.R. Mayeur, I.J. Beyerlein, H.M. Mourad, B.L. Hansen, N.A. Mara, J.S. Carpenter, R.J. Mccabe, and S.D. Sintay, JOM 65, 431 (2013).

    Article  Google Scholar 

  27. S. Raßbach and W. Lehnert, Comput. Mater. Sci. 19, 298 (2000).

    Article  Google Scholar 

  28. T.F. Kong, L.C. Chan, and T.C. Lee, J. Mater. Process. Tech. 167, 472 (2005).

    Article  Google Scholar 

  29. S.K. Mannam, V. Seetharman, and V.S. Raghunathan, Mater. Sci. Eng. 60, 79 (1983).

    Article  Google Scholar 

  30. S. Sundaresan and K.G.K. Murti, Int. J. Joining. Mater. 5, 66 (1993).

    Google Scholar 

  31. C.M. Chen and R. Kovacevic, Int. J. Mach. Tool. Manuf. 44, 1205 (2004).

    Article  Google Scholar 

  32. K. Bhanumurthy, R.K. Fotedar, D. Joyson, G.B. Kale, A.L. Pappachan, A.K. Grover, and J. Krishnan, Mater. Sci. Tech. Lond. 22, 321 (2006).

    Article  Google Scholar 

  33. H. Suzuki, S. Hashizume, Y. Yabuki, Y. Ichihara, and S. Nakajima, Studies on the Flow Stress of Metals and Alloys (Tokyo: The Institute of Industrial Science, University of Tokyo, 1986).

    Google Scholar 

  34. Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps (Materials Park, OH: ASM, 1997).

    Google Scholar 

  35. J. Fluhrer, DEFORM-3D Version 6.1 User’s Manual, (Columbus, OH: Scientific Forming Technologies Corporation, 2007).

  36. F. Cverna, ed., ASM Ready Reference—Thermal Properties of Metals (Materials Park, OH: ASM, 2002).

    Google Scholar 

Download references

Acknowledgements

The work described in this article was supported by Grants from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 511511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, T.F., Chan, L.C. Bulk-Forming Simulation of Bimetallic Watchcase Components. JOM 66, 2145–2155 (2014). https://doi.org/10.1007/s11837-014-1124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1124-7

Keywords

Navigation