Skip to main content
Log in

Recovery of Silver and Gold from Copper Anode Slimes

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.A. Tishchenko, Chem. Abs. 61, 3955 (1964).

    Google Scholar 

  2. J.G. Scott, Metall. Trans. B 21B, 629 (1990).

    Article  Google Scholar 

  3. T.T. Chen and J.E. Dutrizac, Metall. Mater. Trans. B 36B, 229 (2005).

    Article  Google Scholar 

  4. W.C. Cooper, JOM 42 (8), 45 (1990).

    Article  Google Scholar 

  5. E.N. Petkova, Hydrometallurgy 24, 351 (1990).

    Article  Google Scholar 

  6. T.T. Chen and J.E. Dutrizac, in Process Mineralogy IX, ed. W. Petruk, R.D. Hagni, S. Pignolet-Brandom, and D.M. Hausen (TMS, Warrendale, PA, 1990), pp. 289–309.

  7. W.J. Rankin, G.G. Barbante, and D.R. Swinbourne, Trans. Inst. Min. Metall. 104, 59 (1995).

    Google Scholar 

  8. C.P. Dixon, Mining and Metallurgical Practices in AustralasiaThe Sir Maurice Mawley Memorial Volume, Monograph Series No. 10, (Parkville: Australasian Institute of Mining and Metallurgy, 1980), pp. 519–521.

    Google Scholar 

  9. Z.S. Hu, Chin. Nonferr. Smelt. 2, 27 (1996).

    Google Scholar 

  10. X.Y. Guo, C.M. Xiao, J.Y. Zhong, and Q.H. Tian, Chin. J. Nonferr. Met. 20, 990 (2010).

    Google Scholar 

  11. N.I. Antipov and A.V. Tarasov, Metallurgist 47, 229 (2002).

    Article  Google Scholar 

  12. J. Bäckström (Master’s thesis, Luleå University of Technology, 2010).

  13. M. Moats and T. Robinson, Proceedings of Copper, Vol. V, ed. R. Abel and C. Delgado (Santiago, Chile: IIMCH, 2013), pp. 307–317.

    Google Scholar 

  14. X.J. Li, H.Y. Yang, L.L. Tong, and G.B. Chen, J. Northeast. Univ. (Nat. Sci.) 4, 560 (2013).

  15. O. Forsen and J. Aromaa, Acta Metall. Slovaka 3, 184 (2013).

    Google Scholar 

  16. T.T. Chen and J.E. Dutrizac, JOM 8 (8), 39 (1990).

    Article  Google Scholar 

  17. T.T. Chen and J.E. Dutrizac, Metall. Trans. B 21, 229 (1990).

    Article  Google Scholar 

  18. T.T. Chen and J.E. Dutrizac, Can. Metall. Q. 28, 127 (1989).

    Article  Google Scholar 

  19. T.T. Chen and J.E. Dutrizac, Can. Metall. Q. 29, 27 (1990).

    Article  MATH  Google Scholar 

  20. M. Lamontagne, C.A. Pickles, and J.M. Toguri, Miner. Eng. 12, 1441 (1999).

    Article  Google Scholar 

  21. B. Wang (M.S. thesis, Central South University, 2009).

  22. D.R. Swinbourne, G.G. Barbante, and W.J. Rankin, Trans. Inst. Min. Metall. 106, C1 (1997).

    Google Scholar 

  23. D.R. Swinbourne, G.G. Barbante, and A. Strahan, Metall. Mater. Trans. A 27A, 3187 (1996).

    Article  Google Scholar 

  24. R.T. Hukki and U. Runolinna, Trans. AIME 187, (1950).

  25. C.A. Pickles, C. Harris, and J. Peacey, Miner. Eng. 24, 514 (2011).

    Article  Google Scholar 

  26. D.Q. Lin and K.Q. Qiu, Vacuum 86, 1155 (2012).

    Article  Google Scholar 

  27. D.Q. Lin and K.Q. Qiu, Environ. Sci. Technol. 45, 3361 (2011).

    Article  Google Scholar 

  28. S. Syed, Hydrometallurgy 115–116, 30 (2012).

    Article  Google Scholar 

  29. D.R. Swinbourne, G.G. Barbante, and A. Strahan, Proceedings of the 2nd International Symposium on Quality in Non-Ferrous Pyrometallurgy (Montréal, Canada: Canadian Institute to Mining, Metallurgy and Petroleum, 1995), pp. 143–156.

  30. O. Yavuz and R. Ziyadanogullari, Sep. Sci. Technol. 35, 133 (2000).

    Article  Google Scholar 

  31. V. Jung, B. Deierling, and R. Karl, Chem. Abs. 99, 1985 (1983).

    Google Scholar 

  32. F. Arslani and B. Sayiner, Miner. Process. Extr. Metall. Rev. 29, 68 (2008).

    Article  Google Scholar 

  33. J.S. Li and J.D. Miller, Miner. Process. Extr. Metall. Rev. 27, 177 (2006).

    Article  Google Scholar 

  34. T.T. Chen and J.E. Dutrizac, JOM 56 (12), 48 (2004).

    Article  Google Scholar 

  35. M.E.P. Díaz, A.R. Alonso, I. González, and G.T. Lapidus, Hydrometallurgy 129, 90 (2012).

    Article  Google Scholar 

  36. T.De Decker, A. Backx, and A.Van Peteghem “Treatment of Cu-Refinery Slimes” (Paper presented at the 1976 Annual Meeting of the AIME, Las Vegas, NV, 1976).

  37. Nippon Mining Co. Ltd., Jpn. Tokyo Koho. 80, 138 (1980).

  38. B. Donmez, C. Celik, S. Colak, and A. Yartasü, Ind. Eng. Chem. Res. 37, 3382 (1998).

    Article  Google Scholar 

  39. R. Ranjbar, M. Naderi, H. Omidvar, and G. Amoabediny, Hydrometallurgy 143, 54 (2014).

    Article  Google Scholar 

  40. J.A. Sawicki, J.E. Dutrizac, J. Friedl, F.E. Wagner, and T.T. Chen, Nucl. Instrum. Methods Phys. Res. B 76, 378 (1993).

    Article  Google Scholar 

  41. J. Hait, R.K. Jana, V. Kumar, and S.K. Sanyal, Ind. Eng. Chem. Res. 41, 6593 (2002).

    Article  Google Scholar 

  42. J. Hait, R.K. Jana, and S.K. Sanyal, Ind. Eng. Chem. Res. 43, 2079 (2004).

    Article  Google Scholar 

  43. J. Hait, R.K. Jana, and S.K. Sanyal, Trans. Inst. Min. Metall. C 4, 118 (2009).

    Google Scholar 

  44. A.I. Kholkin, V.V. Belova, A.A. Voshkin, T.I. Zhidkova, V.I. Zhilov, and R.K. Jana, J. Chem. Technol. 8, 34 (2005).

    Google Scholar 

  45. W.K. Wang, Y.C. Hoh, W.S. Chuang, and I.S. Shaw, U.S. patent 5,926,874 (1981).

  46. J.E. Hoffmann, JOM 8 (8), 50 (1990).

    Article  Google Scholar 

  47. Y.C. Hoh, B.D. Lee, T. Ma, W.S. Chuang, and W.K. Wang, U.S. patent 4,352,786 (1982).

  48. C. Li, J. Zhang, and H. Wang, Proceedings of the 3rd International Conference on Hydrometallurgy (Beijing, China: International Academic Publishers, 1998), pp. 609–612.

  49. J.E. Hoffmann, JOM 42 (8), 38 (1990).

    Article  Google Scholar 

  50. J.E. Hoffman, EPD Congress 2000, ed. P.R. Taylor (TMS, Warrendale, PA, 2000), pp. 397–410.

  51. J.E. Hoffman, Proceedings of the Copper 95-Cobre 95 International Conference (Montréal, Canada: Canadian Institute to Mining, Metallurgy and Petroleum, 1995), pp. 41–57.

  52. Z.R. Yang, China patent CN1,158,905A (1996).

  53. W.F. Liu, T.Z. Yang, D.C. Zhang, L. Chen, and Y.N. Liu, Int. J. Miner. Process. 128, 48 (2014).

    Article  Google Scholar 

  54. Y.Q. Fan, Y.X. Yang, Y.P. Xiao, Z. Zhao, and Y. Lei, Hydrometallurgy 139, 95 (2013).

    Article  Google Scholar 

  55. X.L. Qin, C.M. Liu, Z.F. Xie, W.L. Liu, L. Tan, and Y.G. Cao, China patent CN102,925,714A (2012).

  56. A. Khaleghi, S. Ghader, and D. Afzali, Int. J. Mining Sci. Technol. 24, 251 (2014).

    Article  Google Scholar 

  57. Y. Kilic, G. Kartal, and S. Timur, Int. J. Miner. Process. 124, 75 (2013).

    Article  Google Scholar 

  58. R.K. Monahan and F. Loewen (Paper presented at the 1972 Annual Conference of the CIM, Halifax, Canada 1972).

  59. V. Jung, B. Deierling, and R. Karl, Chem. Abs. 99, 198566z (1983).

    Google Scholar 

  60. M.A. Fernhdez, M. Segarra, and F. Espiell, Hydrometallurgy 41, 255 (1996).

    Article  Google Scholar 

  61. L. Lindroos, H. Virtanen, and O. Jarvinen, U.S. patent 731,777 B2 (2010).

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant 51104183), the China Scholarship Council and the Shenghua Lieying Program of Central South University (Grant 7607050025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Peng, Z., Hwang, JY. et al. Recovery of Silver and Gold from Copper Anode Slimes. JOM 67, 493–502 (2015). https://doi.org/10.1007/s11837-014-1114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1114-9

Keywords

Navigation