Skip to main content
Log in

Determining the Effects of Growth Velocity on Microstructure and Mechanical Properties of Ti-47Al Alloy using Electromagnetic Confinement and Directional Solidification

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Directionally solidified Ti-47Al samples without contamination were obtained by the electromagnetic confinement and directional solidification technique. With increasing growth velocity, the solid/liquid interface was changed from cellular to dendritic. The grain boundary turned vague, and the lamellae within the grains became distorted. When the growth velocity increased to 200 μm/s, some γ phases and α phases appeared in local region owing to the enrichment of Al solute. The columnar grain size (λ), interdendritic spacing (λ 1), and interlamellar spacing (λ L) were measured, and the effects of growth velocity on these parameters were discussed. As the growth velocity increased, both the microhardness and the 0.2% offset compression yield stress increased continuously. However, the value of yield stress decreased slightly when the growth velocity increased to 200 μm/s, which resulted from the appearance of γ phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.-W. Kim, JOM 46, 30 (1994).

    Article  Google Scholar 

  2. M. Yamaguchi, H. Inui, and K. Ito, Acta Mater. 48, 307 (2000).

    Article  Google Scholar 

  3. K.S. Chan, JOM 49(7), 53 (1997).

    Article  Google Scholar 

  4. D.M. Dimiduk, Mater. Sci. Eng. A 263, 281 (1999).

    Article  Google Scholar 

  5. X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, and G.L. Chen, Acta Mater. 60, 498 (2012).

    Article  Google Scholar 

  6. D.R. Johnson, Y. Masuda, H. Inui, and M. Yamaguchi, Acta Mater. 45, 2523 (1997).

    Article  Google Scholar 

  7. W.Z. Luo, J. Shen, Z.X. Min, and H.Z. Fu, Rare Metall. Mater. Eng. 38, 1441 (2009).

    Google Scholar 

  8. J. Lapin and L. Ondrus, Kovové Mater. 40, 161 (2002).

    Google Scholar 

  9. H.N. Lee, D.R. Johnson, H. Inui, M.H. Oh, D.M. Wee, and M. Yamaguchi, Acta Mater. 48, 3221 (2000).

    Article  Google Scholar 

  10. N. Ge, H.S. Ding, R.R. Chen, J.J. Guo, and H.Z. Fu, Mater. Des. 39, 350 (2012).

    Article  Google Scholar 

  11. S.R. Coriell, S.C. Hardy, and M.R. Cordes, J. Colloid Interface Sci. 60, 126 (1977).

    Article  Google Scholar 

  12. H.Z. Fu, J. Shen, L. Liu, Q.T. Hao, S.M. Li, and J.S. Li, J. Mater. Process. Technol. 148, 25 (2004).

    Article  Google Scholar 

  13. J. Shen, J.G. Li, and H.Z. Fu, J. Mater. Process. Technol. 102, 109 (2000).

    Article  Google Scholar 

  14. C.J. Song, G.F. Liang, Z.M. Xu, J. Shen, and J.G. Li, J. Mater. Process. Technol. 180, 179 (2006).

    Article  Google Scholar 

  15. S.M. Li, L. Liu, J.S. Li, Q.T. Hao, and H.Z. Fu, J. Mater. Process. Technol. 166, 449 (2005).

    Article  Google Scholar 

  16. U. Bőyük and N. Maraşlı, J. Alloy Compd. 485, 264 (2009).

    Article  Google Scholar 

  17. M. Gündüz, H. Kaya, E. Çadırlı, and A. Özmen, Mater. Sci. Eng. A 369, 215 (2004).

    Article  Google Scholar 

  18. K. Kitamura, S. Kimura, and K. Watanabe, J. Cryst. Growth 57, 475 (1982).

    Article  Google Scholar 

  19. M.C. Kim, M.H. Oh, J.H. Lee, H. Inui, M. Yamaguchi, and D.M. Wee, Mater. Sci. Eng. A 239, 570 (1997).

    Article  Google Scholar 

  20. X.Z. Li, T. Sun, C.X. Yu, Y.Q. Su, Y.Z. Cao, J.J. Guo, and H.Z. Fu, Acta Metall. 45, 1479 (2009).

    Google Scholar 

  21. M. Oehring, V. Küstner, F. Appel, and U. Lorenz, Mater. Sci. Forum 539, 1475 (2007).

    Article  Google Scholar 

  22. J.C. Schuster and M. Palm, J. Phase Equilib. Diffus. 27, 255 (2006).

    Article  Google Scholar 

  23. C. McCullough, J.J. Valencia, C.G. Levi, and R. Mehrabian, Acta Metall. 37, 1321 (1989).

    Article  Google Scholar 

  24. C. Stelian, Y. Delannoy, Y. Fautrelle, and T. Duffar, J. Cryst. Growth 266, 207 (2004).

    Article  Google Scholar 

  25. L.S. Wang, J. Shen, Z. Shang, and H.Z. Fu, J. Cryst. Growth 375, 32 (2013).

    Article  Google Scholar 

  26. X.Y. Yan, F.Y. Xie, M. Chu, and Y.A. Chang, Mater. Sci. Eng. A 302, 268 (2001).

    Article  Google Scholar 

  27. J. Lapin, L. Ondrúš, and M. Nazmy, Intermetallics 10, 1019 (2002).

    Article  Google Scholar 

  28. M.A. Eshelman, V. Seetharaman, and R. Trivedi, Acta Metall. 36, 1165 (1988).

    Article  Google Scholar 

  29. W. Kurz and D.J. Fisher, Acta Metall. 29, 11 (1981).

    Article  Google Scholar 

  30. R. Trivedi, Metall. Trans A. 611 (1984).

  31. J.L. Fan, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, J. Alloy Compd. 504, 60 (2010).

    Article  Google Scholar 

  32. J.L. Fan, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Mater. Des. 34, 552 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 51174167, and the Research Fund of State Key Laboratory of Solidification Processing (NWPU), China under Grant No. 63-TP-2011. It is also supported by the Doctorate Foundation of Northwestern Polytechnical University under contract No. CX201308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Shen, J., Xiong, Y. et al. Determining the Effects of Growth Velocity on Microstructure and Mechanical Properties of Ti-47Al Alloy using Electromagnetic Confinement and Directional Solidification. JOM 66, 1914–1922 (2014). https://doi.org/10.1007/s11837-014-1051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1051-7

Keywords

Navigation