Skip to main content
Log in

Formation of Nanotubes and Nanocoils by Spontaneous Self-Rolling of Aluminum (001)/(111) Bilayer

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article introduces a novel nanomechanical architecture to form pure metallic nanotubes or nanocoils via spontaneous self-rolling of initial planar free-standing bilayer thin films. Our molecular dynamics simulation results show that if the film is only a few nanometers thick, the spontaneous reorientation of the (001) top layer leads to rolling-up of the initially planar, free-standing, (001)/(111) bilayer into a tubular or coiled structure. The driving force for this process is given by the existence of an initial mismatch strain between the 2-nm-thick layers of different textures. Our detailed analysis of the reorientation process indicates that the bilayer self-rolling is determined by both energetic and kinetic processes characterizing the spontaneous structural reorientation of the top (001) textured layer to the (111) orientation of the substrate layer. Specifically, the analysis of the simulation results indicates that reorientation of the (001) top layer proceeds via a mechanism characterized by nucleation from multiple sites, propagation, and growth of the new (111)-oriented domains embedded in the original (001)-oriented layer. While individually the newly formed (111) domains grow free of defects, a region containing a surface dislocation-like linear defect forms at the boundary where two such domains meet. The equilibrium of the newly formed bilayer structure containing the surface dislocations is attained by multiple localized bendings of the bilayer structure about the direction coinciding with the dislocations line (the \( [\bar{1}10] \) direction). The spacing (density) of the nucleation is a function of temperature and influence the radius of curvature of the resulting structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 1947 (2001).

    Article  Google Scholar 

  2. C.M. Lieber and Z.L. Wang, MRS Bull. 32, 99 (2007).

    Article  Google Scholar 

  3. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovsky, V.V. Preobrazhenskii, M.A. Putyato, and T.A. Gavrilova, Physica E 6, 828 (2000).

    Article  Google Scholar 

  4. S.V. Golod, V.Y. Prinz, P. Wagli, L. Zhang, O. Kirfel, E. Deckhardt, F. Glaus, C. David, and D. Grutzmacher, Appl. Phys. Lett. 84, 3391 (2004).

    Article  Google Scholar 

  5. O.G. Schmidt and K. Eberl, Nature 410, 168 (2001).

    Article  Google Scholar 

  6. O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, Appl. Phys. Lett. 86, 143109 (2005).

    Article  Google Scholar 

  7. J. Zhang and F. Liu, Nanotechnology 18, 405501 (2007).

    Article  Google Scholar 

  8. M. Huang, C. Boone, M. Roberts, D.E. Savage, M.G. Lagally, N. Shaji, H. Qin, R. Blick, J.A. Nairn, and F. Liu, Adv. Mater. 17, 2860 (2005).

    Article  Google Scholar 

  9. J. Zhang, M. Huang, and F. Liu, Phys. Rev. Lett. 98, 146102 (2007).

    Article  Google Scholar 

  10. J. Lao and D. Moldovan, Appl. Phys. Lett. 93, 093108 (2008).

    Article  Google Scholar 

  11. Y. Kondo, Q. Ru, and K. Takayanagi, Phys. Rev. Lett. 82, 751 (1999).

    Article  Google Scholar 

  12. A. Hasmy and E. Medina, Phys. Rev. Lett. 88, 096103 (2001).

    Article  Google Scholar 

  13. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).

    Article  Google Scholar 

  14. T. Wagner, J. Marien, and G. Duscher, Thin Solid Films 398, 419 (2001).

    Article  Google Scholar 

  15. G.H. Kim and C.I. Kim, Thin Solid Films 515, 4955 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF-EPSCoR through Grants EPS-0701491 and EPS-0346411. The simulations were performed at the LSU Center for Computation & Technology and LONI Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Lao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lao, J., Moldovan, D. Formation of Nanotubes and Nanocoils by Spontaneous Self-Rolling of Aluminum (001)/(111) Bilayer. JOM 65, 168–174 (2013). https://doi.org/10.1007/s11837-012-0507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0507-x

Keywords

Navigation