Skip to main content
Log in

The fracture toughness of bulk metallic glasses

  • Bulk Metallic Glasses II
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Stiffness, strength, and toughness are the three primary attributes of a material, in terms of its mechanical properties. Bulk metallic glasses (BMGs) are known to exhibit elastic moduli at a fraction lower than crystalline alloys and have extraordinary strength. However, the reported values of fracture toughness of BMGs are highly variable; some BMGs such as the Zr-based ones have toughness values that are comparable to some high strength steels and titanium alloys, whereas there are also BMGs that are almost as brittle as silicate glasses. Invariably, monolithic BMGs exhibit no or low crack growth resistance and tend to become brittle upon structural relaxation. Despite its critical importance for the use of BMGs as structural materials, the fracture toughness of BMGs is relatively poorly understood. In this paper, we review the available literature to summarize the current understanding of the mechanics and micromechanisms of BMG toughness and highlight the needs for future research in this important area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.L. Johnson, MRS Bull., 24 (1999), p.42.

    CAS  Google Scholar 

  2. A. Inoue, Acta Mater., 48 (2000), p. 279.

    CAS  Google Scholar 

  3. A.L. Greer and E. Ma, MRS Bull., 32 (1998), p. 611.

    Google Scholar 

  4. M.F. Ashby and A.L. Greer, Scr. Mater., 54 (2006), p. 321.

    CAS  Google Scholar 

  5. A.R. Yavari, J.J. Lewandowski, and J. Eckert, MRS Bull., 32 (2007), p. 635.

    CAS  Google Scholar 

  6. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Wafer, 55 (2007), p. 4067.

    CAS  Google Scholar 

  7. M. Chen, Annu. Rev. Mater. Res., 38 (2008), p. 445.

    ADS  CAS  Google Scholar 

  8. M.E. Launey and R.O. Ritchie, Adv. Mater, 21 (2009), p. 2103.

    CAS  Google Scholar 

  9. H. Kimura and T. Masumoto, Scr. Metell., 9 (1975), p. 211.

    CAS  Google Scholar 

  10. L.A. Davis, J. Mater. Sci., 10 (1975), p. 1557.

    ADS  CAS  Google Scholar 

  11. D.G. Ast and D. Krenitsky, Mater. Sci. Eng., 23 (1976), p. 241.

    CAS  Google Scholar 

  12. A. Peker, and W.L. Johnson, Appl. Phys. Lett., 63 (1993), p. 2342.

    ADS  Google Scholar 

  13. A. Inoue and T. Zhang, Mater. Trans. JIM, 37 (1996), p. 185.

    CAS  Google Scholar 

  14. Y. Li et al, MRS. Bull., 32 (2007), p. 624.

    CAS  Google Scholar 

  15. C.J. Gibert, R.O. Ritchie, and W.L. Johnson, Appl. Phys. Left., 71 (1997), p. 476.

    ADS  Google Scholar 

  16. C.J. Gibert, V. Schroeder, and R.O. Ritchie, Metall. Mater. Trans., 30A (1999), p. 1739.

    Google Scholar 

  17. P. Lowhaphandu and J.J. Lewandowski, Scr. Mater., 38 (1998), p. 1811.

    CAS  Google Scholar 

  18. J.J. Lewandowski, Mater. Trans., 42 (2001), p. 633.

    CAS  Google Scholar 

  19. C.P. Kim et al, Scr. Mater., 60 (2009), p. 80.

    CAS  Google Scholar 

  20. J.H. Schneibel, J.A. Horton, and P.R. Munroe, Metall. Mater. Trans., 32A (2001), p. 2819.

    CAS  Google Scholar 

  21. A. Kawashima et al. Mater. Trans., 46 (2005), p. 1725.

    MathSciNet  CAS  Google Scholar 

  22. ASTM E399, Test Method for Plane-Strain Fracture Toughness of Metallic Materials (Philadelphia, PA: ASTM, 1994).

    Google Scholar 

  23. J.J. Lewandowski, W.H. Wang, and A.L. Greer, Philos. Mag. Lett., 85 (2005), p. 77.

    ADS  CAS  Google Scholar 

  24. J.J. Lewandowski et al, Appl. Phys. Lett., 92 (2008), p. 091918.

    ADS  Google Scholar 

  25. P. Jia et al, Scr. Mater., 61 (2009), p. 137.

    CAS  Google Scholar 

  26. M.D. Demetriou et al, Appl. Phys. Lett., 95 (2009), p. 041907.

    ADS  Google Scholar 

  27. R.D. Conner et al, Scr. Mater., 37 (1997), p. 1373.

    CAS  Google Scholar 

  28. J. Schroers and W.L. Johnson, Phys. Rev. Lett., 93 (2004), p. 255506.

    PubMed  ADS  Google Scholar 

  29. X.J. Gu et al, Acta Mater., 58 (2010), p. 1708.

    CAS  Google Scholar 

  30. P. Wesseling et al, Scr. Mater., 51 (2004), p. 151.

    CAS  Google Scholar 

  31. X.J. Gu et al, Scr. Mater, 60 (2009), p. 1027.

    ADS  CAS  Google Scholar 

  32. C. Can Aydiner et al, J. Non-Cryst. Solids, 316 (2003), p. 82.

    ADS  CAS  Google Scholar 

  33. C. Can Aydiner and E. Ustundag, Mech. Mater., 37 (2005), p. 201.

    Google Scholar 

  34. M.E. Launey, R. Busch, and J.J. Kruzic, Acta Mater., 56 (2008), p. 500.

    CAS  Google Scholar 

  35. V. Keryvin et al, J. Non-Cryst. Solids, 352 (2006), p. 2863.

    ADS  CAS  Google Scholar 

  36. V. Keryvin, Y. Nadot, and Y. Yokoyama, Scr. Mater., 57 (2007), p. 145.

    CAS  Google Scholar 

  37. Y. Yokoyama et al. Mater. Trans., 45 (2004), p. 1819.

    CAS  Google Scholar 

  38. A. Shamimi Nouri et al, Philos. Mag. Lett., 88 (2008), p. 853.

    ADS  CAS  Google Scholar 

  39. K. Flores and R. Dauskardt, Scr. Mater., 41 (1999), p. 937.

    CAS  Google Scholar 

  40. D. Rittel and A.J. Rosakis, Eng. Fracture Mech., 72 (2005), p. 1905.

    Google Scholar 

  41. H.A. Hassan, L. Kecskes, and J.J. Lewandowski, Metall. Mater. Trans., 39A (2008), p. 2077.

    CAS  Google Scholar 

  42. F. Spaepen, Acta Metall., 25 (1977), p. 407.

    CAS  Google Scholar 

  43. M.H. Cohen and D. Turnbull, J. Chem. Phys., 34 (1961), p. 120.

    ADS  Google Scholar 

  44. T. Egami, Intermetallics, 14 (2006), p. 882.

    CAS  Google Scholar 

  45. Y.Q. Cheng et al, Appl. Phys. Lett., 53 (2008) 051910

    ADS  Google Scholar 

  46. T.W. Wu and F. Spaepen, Philos. Mag. B, 61 (1990), p. 739.

    CAS  Google Scholar 

  47. U. Ramamurty et al, Scr. Mater., 47 (2002), p. 107.

    CAS  Google Scholar 

  48. P. Murali and U. Ramamurty, Acta Mater., 53 (2005), p. 1467.

    CAS  Google Scholar 

  49. D. Suh and R.H. Dauskardt, Scr. Mater., 42 (2000), p. 233.

    CAS  Google Scholar 

  50. D. Suh et al, Acta Mater., 50 (2002), p. 537.

    CAS  Google Scholar 

  51. W. Dmowski et al. Mater. Sci. Eng. A, 471 (2007), p. 125.

    Google Scholar 

  52. N. Nagendra et al, Acta Mater., 48 (2000), p. 2603.

    CAS  Google Scholar 

  53. J. Basu et al, Phil. Mag., 83 (2003), p. 1747.

    ADS  CAS  Google Scholar 

  54. Y. Yokoyama et al, Acta Mater., 56 (2008), p. 6097.

    CAS  Google Scholar 

  55. Y. Yokoyama et al. Mater. Trans., 48 (2007), p. 1276.

    MathSciNet  CAS  Google Scholar 

  56. D. Suh and R.H. Dauskardt, Ann. Chim. Sci. Mater., 27 (2002), p. 25.

    CAS  Google Scholar 

  57. A. van den Beukel and J. Seitsma, Acta Metall. Mater., 38 (1990), p. 383.

    Google Scholar 

  58. A. van den Beukel and S. Radelaar, Acta Metall., 31 (1983), p. 419.

    Google Scholar 

  59. R. Raghavan, P. Murali, and U. Ramamurty, Acta Mater., 57 (2009), p. 3332.

    CAS  Google Scholar 

  60. R. Raghavan, P. Murali, and U. Ramamurty, Intermetallics, 14 (2006), p. 1051.

    CAS  Google Scholar 

  61. M.L. Falk, Phys. Rev. B, 60 (1999), p. 7062.

    ADS  CAS  Google Scholar 

  62. W.L. Johnson and K. Samwer, Phys. Rev. Lett., 95 (2005), p. 195501.

    PubMed  ADS  CAS  Google Scholar 

  63. D. Pan et al, Proc. Natl. Acad. Sci. USA, 105 (2008), p. 14769.

    PubMed  ADS  CAS  Google Scholar 

  64. D. Pan et al, Appl. Phys. Lett., 95 (2009), p. 141909.

    ADS  Google Scholar 

  65. F.H. Dalla Torre et al, Appl. Phys. Lett., 89 (2006), p. 091918.

    ADS  Google Scholar 

  66. A. Dubach et al, Acta Mater., 56 (2008), p. 4635.

    Google Scholar 

  67. X.K. Xi et al, Phys. Rev. Lett., 94 (2005), p. 125510.

    PubMed  ADS  CAS  Google Scholar 

  68. K.M. Flores and R.H. Dauskardt, J. Mech. Phys. Solids, 54 (2006), p. 2418.

    MATH  ADS  CAS  Google Scholar 

  69. R. Varadarajan et al, Metall. Mater. Trans A, 41A (2010), p. 149.

    ADS  CAS  Google Scholar 

  70. R. Narasimhan et al, J. Phys. D: Appl. Phys., 42 (2009), p. 214005.

    ADS  Google Scholar 

  71. M.N.M. Patnaik, R. Narasimhan, and U. Ramamurty, Acta Mater., 52 (2004), p. 3335.

    CAS  Google Scholar 

  72. V. Keryvin et al, Phil. Mag., 88 (2008) 1773.

    ADS  CAS  Google Scholar 

  73. J.W. Hutchinson, J. Mech. Phys. Solids, 16 (1968), p. 13; J.R. Rice and G.F. Rosengren, J. Mech. Phys. Solids, 16 (1968), p. 1.

    MATH  ADS  Google Scholar 

  74. P. Tandaiya, R. Narasimhan, and U. Ramamurty, Acta Mater., 55 (2007), p. 6541.

    CAS  Google Scholar 

  75. P. Tandaiya, U. Ramamurty, and R. Narasimhan, J. Mech. Phys. Solids, 57 (2009), p. 1880.

    ADS  CAS  Google Scholar 

  76. L. Anand and C. Su, J. Mech. Phys. Solids, 53 (2005), p. 1362.

    MATH  MathSciNet  ADS  CAS  Google Scholar 

  77. S.F. Pugh, Phil. Mag., 45 (1950), p. 823.

    Google Scholar 

  78. A. Kelly, W.R. Tyson, and A.H. Cottrell, Phil. Mag., 15(1967), p. 567.

    ADS  CAS  Google Scholar 

  79. J.R. Rice, and R. Thomson, Phil. Mag. 29 (1974), p. 73.

    ADS  CAS  Google Scholar 

  80. H.S. Chen, J.T. Krause, and E. Coleman, J. Non-Cryst. Solids, 18 (1975), p. 157.

    ADS  CAS  Google Scholar 

  81. P. Tandaiya et al, Acta Mater., 56 (2008), p. 6077.

    CAS  Google Scholar 

  82. D.L. Henann and L. Anand, Acta Mater., 57 (2009), p. 6057.

    CAS  Google Scholar 

  83. W.H. Wang, J.Appl. Phys., 99 (2006), 093506.

    ADS  Google Scholar 

  84. Y. Zhang and A.L. Greer, J. Alloys Compd., 434–435 (2007), p. 2.

    Google Scholar 

  85. X.J. Gu et al, Appl. Phys. Lett., 88 (2006), p. 211905.

    ADS  Google Scholar 

  86. Y.Q. Cheng et al, Acta Mater., 57 (2009) p. 3253; Acta Mater., 3253 56 (2008) p. 5263; Phys. Rev. B, 78 (2008) 014207

    ADS  CAS  Google Scholar 

  87. C.C. Hays, C.P. Kim, and W.L. Johnson, Phys. Rev. Left, 84 (2000), p. 2901.

    ADS  CAS  Google Scholar 

  88. F. Szuecs, C.P. Kim, and W.L. Johnson, Acta Mater., 49 (2001), p. 1507.

    CAS  Google Scholar 

  89. K.M. Flores, W.L. Johnson, and R.H. Dauskardt, Scr.Mafer.,49(2003),p.1181.

    CAS  Google Scholar 

  90. D.C. Hofmann et al. Nature, 451 (2008), p. 1085.

    PubMed  ADS  CAS  Google Scholar 

  91. D.C. Hofmann et al, Scr. Mater., 59 (2008), p. 684.

    CAS  Google Scholar 

  92. D.C. Hofmann et al, Proc. Natl. Acad. Sci. USA, 23 (2008), p. 20136.

    Google Scholar 

  93. M.E. Launey et al, Appl. Phys. Lett., 94 (2009), p. 241910.

    ADS  Google Scholar 

  94. K. Boopathy et al, J. Mater. Res., 24 (2009), p. 3611.

    ADS  CAS  Google Scholar 

  95. W.J. Clegg et al. Nature, 347 (1990), p. 455.

    ADS  CAS  Google Scholar 

  96. H.C. Cao and A.G. Evans, Acta Metall. Mater., 39 (1991), p. 2997.

    CAS  Google Scholar 

  97. A.T. Alpas and J.D. Embury, Scr. Metall., 22 (1988), p. 265.

    CAS  Google Scholar 

  98. Y. Leng and T.H. Courtney, J. Mater. Sci., 24 (1989), p. 2006.

    ADS  CAS  Google Scholar 

  99. Y. Leng and T.H. Courtney, Metall. Trans., 21A (1990), p. 2159.

    CAS  Google Scholar 

  100. Y. Leng and T.H. Courtney, J. Mater. Sci., 26 (1991), p. 588.

    ADS  Google Scholar 

  101. J.S. Park et al. Mater. Sci. Eng., 417 (2006), p. 239.

    Google Scholar 

  102. J.S. Park et al. Mater. Sci. Eng., 447 (2007), p. 319.

    Google Scholar 

  103. Y.H. Go et al. Mater. Sci. Eng., 460461 (2007), p. 377.

    Google Scholar 

  104. Y. Wang et al, Proc. Natl. Acad. Sci. USA, 104 (2007), p. 11155.

    PubMed  ADS  CAS  Google Scholar 

  105. A. Donohue et al, Appl. Phys. Lett., 91 (2007), p. 241905.

    ADS  Google Scholar 

  106. T.G. Nieh and J. Wadsworth, Intermetallics, 16 (2008), p. 1156.

    CAS  Google Scholar 

  107. L. Zhang et al, Acta Mater., 57 (2009), p. 1154.

    CAS  Google Scholar 

  108. Y. Zhang, W.H. Wang, and A.L. Greer, Nature Wafer, 5 (2006), p. 857.

    ADS  CAS  Google Scholar 

  109. R. Bhowmick et al, Acta Mater., 54 (2006), p. 4221.

    CAS  Google Scholar 

  110. R. Raghavan et al, Scr. Mater., 59 (2008), p. 167.

    CAS  Google Scholar 

  111. A. Dubach et al, Scr. Mater., 60 (2009), p. 567.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Ramamurty, U. & Ma, E. The fracture toughness of bulk metallic glasses. JOM 62, 10–18 (2010). https://doi.org/10.1007/s11837-010-0052-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0052-4

Keywords

Navigation