Skip to main content
Log in

Microstructural coarsening in Sn-Ag-based solders and its effects on mechanical properties

  • Lead-Free Solder
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Solders based on Sn-Ag alloys are susceptible to microstructural coarsening during storage or service, resulting in evolution of joint properties, and hence reliability, over time. Coarsening can occur during static aging, and even faster during thermo-mechanical cycling (TMC). The kinetics of coarsening may also depend on the scale of the joint. These effects lead to evolution of the mechanical properties of the joint over time, as well as spatial variations of property within the joint. Therefore, accurate prediction of joint properties during service or storage requires a quantitative understanding of coarsening under both isothermal and TMC conditions, and incorporating these in constitutive laws. This paper discusses the kinetics of coarsening in Sn-Ag based solders, and presents a rationale for joint-scale dependence of coarsening. The impact of coarsening on creep and fracture properties of joints under drop conditions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.K. Kang et al., IBM J Res. Dev., 49 (2005), pp. 607–620.

    Article  CAS  Google Scholar 

  2. S. Choi et al., J. Electron. Mater., 28 (1999), pp. 1209–1215.

    Article  ADS  CAS  Google Scholar 

  3. K.N. Subramanian, T.R. Bieler, and J.P. Lucas, J. Electron. Mater., 28 (1999), pp. 1176–1183.

    Article  ADS  CAS  Google Scholar 

  4. P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater., 33 (2004), pp. 1473–1484.

    Article  ADS  CAS  Google Scholar 

  5. Y. Ding et al., J. Alloys and Compounds, 428 (2007), pp. 274–285.

    Article  CAS  Google Scholar 

  6. F. Guo et al., Solder. Surf. Mount Tech., 12 (2001), pp. 7–18.

    Article  Google Scholar 

  7. A. Zribi et al., JOM, 54(6) (2002), pp. 38–40.

    Article  CAS  MathSciNet  Google Scholar 

  8. Q. Xiao, L. Nguyen, and W.D. Armstrong, Proc. of the 2004 Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2004), pp. 1325–1332.

    Google Scholar 

  9. R. Fix et al., J. Electron. Mater., 34 (2005), pp. 137–142.

    Article  ADS  CAS  Google Scholar 

  10. I. Dutta, J. Electron. Mater., 32 (2003), pp. 201–207.

    Article  ADS  CAS  Google Scholar 

  11. I. Dutta et al., Mater. Sci. Eng. A, 410–411 (2005), pp. 48–52.

    Google Scholar 

  12. R. Fix, W. Nuchter, and Jurgen Wilde, Soldering and Mount Technology, 20 (2008), pp. 13–21.

    Article  CAS  Google Scholar 

  13. S. Wiese, E. Meusel and K.-L. Wolter, Electronic Components and Technology Conference (Piscataway, NJ: IEEE, 2003), pp. 197–206.

    Google Scholar 

  14. S.L. Allen et al., J. Mater. Res., 19 (2004), pp. 1417–1424.

    Article  ADS  Google Scholar 

  15. H.L.J. Pang et al., Mater. Sci. Eng. A, 307 (2001), pp. 42–50.

    Article  Google Scholar 

  16. T.Y. Lee et al., J. Mater. Sci., 17 (2002), pp. 291–301.

    CAS  Google Scholar 

  17. Y.C. Chana et al., Mater. Sci. Eng. B, 55 (1998), pp. 5–13.

    Article  Google Scholar 

  18. A. Zribi et al., J. Electron. Mater., 30 (2001), pp. 1157–1164.

    Article  ADS  CAS  Google Scholar 

  19. D. Suh et al., Mater. Sci. Eng. A, 460–461 (2007), pp. 595–603.

    Google Scholar 

  20. E. Ho et al., J. Electron. Mater., 31 (2002), pp. 584–590.

    Article  ADS  CAS  Google Scholar 

  21. P. Kumar et al., Proc. 10th Electronics Packaging Technology Conference (EPTC) (Piscataway, NJ: IEEE, 2008), pp. 903–909.

    Book  Google Scholar 

  22. R. Marks et al., Proc. ITherm 2004 (IEEE CDROM) (Piscataway, NJ: IEEE, 2004), p. 95.

    Google Scholar 

  23. I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. A, A379 (2004), p. 401.

    CAS  Google Scholar 

  24. R.S. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A, 39 (2008), pp. 349–362.

    Article  CAS  Google Scholar 

  25. X. Deng et al., Metall. Mater. Trans. A, 36 (2005), pp. 55–64.

    Article  Google Scholar 

  26. K. Mysore et al., Proc. 11th Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (Piscataway, NJ: IEEE, 2008), pp. 870–875.

    Book  Google Scholar 

  27. X. Long et al., J. Electron. Mater., 37 (2008), pp. 189–200.

    Article  ADS  CAS  Google Scholar 

  28. P. Kumar et al., in Ref. 26, pp. 660–667.

    Book  Google Scholar 

  29. P. Lall et al., in Ref. 26, pp. 822–835.

    Book  Google Scholar 

  30. D.S. Liu et al., Mater. Sci. Eng. A, 494 (2008), pp. 196–202.

    Article  CAS  Google Scholar 

  31. D. Pan et al., Review of Scientific Instruments, 75 (2004), pp. 5244–5252.

    Article  ADS  CAS  Google Scholar 

  32. E.A. Brandes and G.B. Brook, editors, Smithells Metals Reference Book, 7th edition (Oxford, U.K.: Butterworth-Heinemann, 1992), p. 13.

    Google Scholar 

  33. L. Smugovsky, D.D. Perovic, and J.W. Rutter, Powder Metallurgy, 48 (2005), pp. 193–198.

    Article  CAS  Google Scholar 

  34. H. Nishikawa, J.Y. Piao, and T. Takemoto, J. Japan Inst. Metals, 70 (2006), pp. 427–433.

    Article  CAS  Google Scholar 

  35. W. Henderson et al., J. Mater. Res., 17 (2002), pp. 2775–2778.

    Article  ADS  CAS  Google Scholar 

  36. H.Y. Lu, H. Balkan, and K.Y.S. Ng, J. Mater. Sci.—Materials in Electronics, 17 (2006), pp. 171–188.

    Article  CAS  Google Scholar 

  37. H.G. Song, J.W. Morris, and F. Hua, Materials Transactions, 43 (2002), p. 184.

    Google Scholar 

  38. M.D. Mathew et al., Metall. Mater. Trans. A, 36 (2005), pp. 99–105.

    Article  Google Scholar 

  39. M.A. Rist, W.J. Plumbridge, and S. Cooper, J. Electron. Mater., 35 (2006) p. 1050.

    Article  ADS  CAS  Google Scholar 

  40. S.W. Shin and J. Yu, J. Electron. Mater., 34 (2005), p. 188.

    Article  ADS  CAS  Google Scholar 

  41. Z. Guo, Y.H. Pao, and H. Conrad, Trans. ASME, J. Electron. Packaging, 117 (1995), p. 100.

    Article  Google Scholar 

  42. R.W. Neu, D.T. Scott, and M.W. Woodmansee, ASME Trans., J. Electron. Packaging, 123 (2001), p. 238.

    Article  CAS  Google Scholar 

  43. M. Kerr and N. Chawla, Acta Materialia, 52 (2004), p. 4527.

    Article  CAS  Google Scholar 

  44. C. Park et al., J. Mater. Sci., 42 (2007), pp. 5182–5187.

    Article  ADS  CAS  Google Scholar 

  45. L.M. Brown and R.K. Ham, Strengthening Methods in Crystals, ed. A. Kelly and R.B. Nicholson (London: Appl. Sci. Publ. Ltd., 1971), pp. 12–135.

    Google Scholar 

  46. R. Lagenborg, Scripta Metall., 7 (1973), p. 605.

    Article  Google Scholar 

  47. E. Arzt and J. Rosler, Acta Metall., 36 (1988), p. 1053.

    Article  CAS  Google Scholar 

  48. J. Rosler and E. Arzt, Acta Metall. Mater., 38 (1990), p. 671.

    Article  Google Scholar 

  49. M.L. Huang, L. Wang, and C.M.L. Wu, J. Mater. Research, 17 (2002), p. 2897.

    Article  ADS  CAS  Google Scholar 

  50. P. Adeva et al., Mater. Sci. Eng. A, A194 (1995), pp. 17–23.

    CAS  Google Scholar 

  51. T. Reinikainen and J. Kivilahti, Metall. Mater. Trans., 30A (1999), pp. 123–132.

    Article  CAS  Google Scholar 

  52. G.S. Ansell and J. Weertman, Trans. TMS-AIME, 215 (1959), p. 838.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, I., Kumar, P. & Subbarayan, G. Microstructural coarsening in Sn-Ag-based solders and its effects on mechanical properties. JOM 61, 29–38 (2009). https://doi.org/10.1007/s11837-009-0085-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0085-8

Keywords

Navigation