Skip to main content
Log in

Computer Vision Techniques Applied for Diagnostic Analysis of Retinal OCT Images: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The retina is a tiny layer at the posterior pole of an eye and is made up of tissues sensitive to light, these tissues generate nerve signals that pass through the optic nerve to the brain. A retinal disorder occurs when the retina malfunctions; glaucoma, diabetic retinopathy and pathologic myopia are retinal disorders and principal causes of blindness worldwide. These retinal disorders are often diagnosed and treated by an ophthalmologist. However, to accurately assess a retinal disease, ophthalmologist would need qualitative and quantitative analysis of the disease, it’s early and current statistics, but acquisition of these measurements are not possible through manual techniques, there should be automated computer aided diagnosis (CAD) systems to assist ophthalmologists. In this comprehensive review, an analysis and evaluation has been performed of different computer vision and image processing approaches applied to OCT images for automatic diagnosis of retinal disorders. We also reported disease causes, symptoms and pathologies manifestations within OCT images, which can serve as baseline knowledge for development of an automated CAD system. Hence, this disease specific review offers a good understanding to analyze visual impairments from retinal OCT images which will help researcher to design enhanced therapeutic systems for retinal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  Google Scholar 

  2. Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27(1):45–88. doi:10.1016/j.preteyeres.2007.07.005

    Article  Google Scholar 

  3. Poddar R, Reddikumar M (2015) In vitro 3D anterior segment imaging in lamb eye with extended depth range swept source optical coherence tomography. Opt Laser Technol 67:33–37. doi:10.1016/j.optlastec.2014.09.007

    Article  Google Scholar 

  4. Považay B, Hofer B, Torti C, Hermann B, Tumlinson AR, Esmaeelpour M, Egan CA, Bird AC, Drexler W (2009) Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Opt Express 17(5):4134–4150. doi:10.1364/OE.17.004134

    Article  Google Scholar 

  5. Lebed E, Mackenzie PJ, Sarunic MV, Beg FM (2010) Rapid volumetric OCT image acquisition using compressive sampling. Opt Express 18(20):21003–21012. doi:10.1364/OE.18.021003

    Article  Google Scholar 

  6. Young M, Lebed E, Jian Y, Mackenzie PJ, Beg MF, Sarunic MV (2011) Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography. Biomed Opt Express 2(9):2690–2697. doi:10.1364/BOE.2.002690

    Article  Google Scholar 

  7. Sieun L, Lebed E, Sarunic MV, Beg MF (2015) Exact surface registration of retinal surfaces from 3-D optical coherence tomography images. IEEE Trans Biomed Eng 62(2):609–617. doi:10.1109/TBME.2014.2361778

    Article  Google Scholar 

  8. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102(2):217–229

    Article  Google Scholar 

  9. Abramoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208. doi:10.1109/RBME.2010.2084567

    Article  Google Scholar 

  10. Bron AM, Francoz A, Beynat J, Nicot F, Cattaneo A, Creuzot C (2011) Is choroidal thickness different between glaucoma patients and healthy subjects? Acta Ophthalmol. doi:10.1111/j.1755-3768.2011.4353.x

    Google Scholar 

  11. Mwanza J-C, Sayyad FE, Budenz DL (2012) Choroidal thickness in unilateral advanced glaucomachoroidal thickness in unilateral glaucoma. Invest Ophthalmol Vis Sci 53(10):6695–6701. doi:10.1167/iovs.12-10388

    Article  Google Scholar 

  12. Bowd C, Zangwill LM, Blumenthal EZ, Vasile C, Boehm AG, Gokhale PA, Mohammadi K, Amini P, Sankary TM, Weinreb RN (2002) Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender. J Opt Soc Am A Opt Image Sci Vis 19(1):197–207

    Article  Google Scholar 

  13. Bouma B (2001) Handbook of optical coherence tomography. Taylor & Francis, New York

    Book  Google Scholar 

  14. Schuman JS (2008) Spectral domain optical coherence tomography for glaucoma (An AOS Thesis). Trans Am Ophthalmol Soc 106:426–458

    Google Scholar 

  15. Wang RK, Tuchin VV (2013) Advanced biophotonics: tissue optical sectioning. Taylor & Francis, New York

    Google Scholar 

  16. Xu J, Ishikawa H, Wollstein G, Schuman JS (2011) 3D optical coherence tomography super pixel with machine classifier analysis for glaucoma detection. Conf Proc 2011:3395–3398. doi:10.1109/IEMBS.2011.6090919

    Google Scholar 

  17. Liang R (2012) Biomedical optical imaging technologies: design and applications. Springer, Berlin

    Google Scholar 

  18. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113(3):325–332

    Article  Google Scholar 

  19. Fercher AFHC, Drexler W, Kamp G, Sattmann H (1993) In vivo optical coherence tomography. Am J Ophthalmol 116(1):113–114

    Article  Google Scholar 

  20. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA (1995) Optical biopsy and imaging using optical coherence tomography. Nat Med 1(9):970–972

    Article  Google Scholar 

  21. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112(10):1734–1746. doi:10.1016/j.ophtha.2005.05.023

    Article  Google Scholar 

  22. Yaqoob Z, Wu J, Yang C (2005) Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques 39(6):S6–S13. doi:10.2144/000112090

    Article  Google Scholar 

  23. Wojtkowski M (2010) High-speed optical coherence tomography: basics and applications. Appl Opt 49(16):D30–D61. doi:10.1364/AO.49.000D30

    Article  Google Scholar 

  24. Wojtkowski M, Bajraszewski T, Targowski P, Kowalczyk A (2003) Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt Lett 28(19):1745–1747. doi:10.1364/OL.28.001745

    Article  Google Scholar 

  25. Yun S, Tearney G, Bouma B, Park B, de Boer J (2003) High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Opt Express 11(26):3598–3604. doi:10.1364/OE.11.003598

    Article  Google Scholar 

  26. Nassif N, Cense B, Hyle Park B, Yun SH, Chen TC, Bouma BE, Tearney GJ, Boer JFd (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29(5):480–482. doi:10.1364/OL.29.000480

    Article  Google Scholar 

  27. Bajraszewski T, Wojtkowski M, Szkulmowski M, Szkulmowska A, Huber R, Kowalczyk A (2008) Improved spectral optical coherence tomography using optical frequency comb. Opt Express 16(6):4163–4176. doi:10.1364/OE.16.004163

    Article  Google Scholar 

  28. Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, Fujimoto JG (2008) Ultrahigh speed spectral/Fourierdomain OCT ophthalmic imaging at70,000 to 312,500 axial scans per second. Opt Express 16(19):15149–15169. doi:10.1364/OE.16.015149

    Article  Google Scholar 

  29. Grulkowski I, Gora M, Szkulmowski M, Gorczynska I, Szlag D, Marcos S, Kowalczyk A, Wojtkowski M (2009) Anterior segment imaging with spectral OCT system using a high-speed CMOS camera. Opt Express 17(6):4842–4858. doi:10.1364/OE.17.004842

    Article  Google Scholar 

  30. Szkulmowska A, Szkulmowski M, Szlag D, Kowalczyk A, Wojtkowski M (2009) Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography. Opt Express 17(13):10584–10598. doi:10.1364/OE.17.010584

    Article  Google Scholar 

  31. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11(18):2183–2189. doi:10.1364/OE.11.002183

    Article  Google Scholar 

  32. Yun SH, Boudoux C, Tearney GJ, Bouma BE (2003) High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt Lett 28(20):1981–1983. doi:10.1364/OL.28.001981

    Article  Google Scholar 

  33. Huber R, Wojtkowski M, Fujimoto JG, Jiang JY, Cable AE (2005) Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt Express 13(26):10523–10538. doi:10.1364/OPEX.13.010523

    Article  Google Scholar 

  34. Huang S-W, Aguirre AD, Huber RA, Adler DC, Fujimoto JG (2007) Swept source optical coherence microscopy using a Fourier domain mode-locked laser. Opt Express 15(10):6210–6217. doi:10.1364/OE.15.006210

    Article  Google Scholar 

  35. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG (1997) Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4 + :forsterite laser. Opt Lett 22(22):1704–1706. doi:10.1364/OL.22.001704

    Article  Google Scholar 

  36. Yun S, Tearney G, de Boer J, Iftimia N, Bouma B (2003) High-speed optical frequency-domain imaging. Opt Express 11(22):2953–2963. doi:10.1364/OE.11.002953

    Article  Google Scholar 

  37. Oh WY, Yun SH, Tearney GJ, Bouma BE (2005) 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt Lett 30(23):3159–3161. doi:10.1364/OL.30.003159

    Article  Google Scholar 

  38. Oh WY, Yun SH, Vakoc BJ, Tearney GJ, Bouma BE (2006) Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring. Appl Phys Lett 88(10):103902–103903. doi:10.1063/1.2179125

    Article  Google Scholar 

  39. Larina IV, Furushima K, Dickinson ME, Behringer RR, Larin KV (2009) Live imaging of rat embryos with Doppler swept-source optical coherence tomography. J Biomed Opt 14(5):050506–050503. doi:10.1117/1.3241044

    Article  Google Scholar 

  40. Mariampillai A, Standish BA, Munce NR, Randall C, Liu G, Jiang JY, Cable AE, Vitkin IA, Yang VXD (2007) Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. Opt Express 15(4):1627–1638. doi:10.1364/OE.15.001627

    Article  Google Scholar 

  41. Huber R, Wojtkowski M, Taira K, Fujimoto J, Hsu K (2005) Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt Express 13(9):3513–3528. doi:10.1364/OPEX.13.003513

    Article  Google Scholar 

  42. Choma MA, Hsu K, Izatt JA (2005) Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt 10(4):044009–044006. doi:10.1117/1.1961474

    Article  Google Scholar 

  43. Huber R, Wojtkowski M, Fujimoto JG (2006) Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt Express 14(8):3225–3237. doi:10.1364/OE.14.003225

    Article  Google Scholar 

  44. Huber R, Adler DC, Srinivasan VJ, Fujimoto JG (2007) Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt Lett 32(14):2049–2051. doi:10.1364/OL.32.002049

    Article  Google Scholar 

  45. Biedermann BR, Wieser W, Eigenwillig CM, Klein T, Huber R (2009) Dispersion, coherence and noise of Fourier domain mode locked lasers. Opt Express 17(12):9947–9961. doi:10.1364/OE.17.009947

    Article  Google Scholar 

  46. 3D OCT-1 maestro, optical coherence tomography. http://www.topcon-medical.eu/eu/products/253-3d-oct-1-maestro-optical-coherence-tomography.html. Accessed March 2015

  47. DRI OCT-1, Atlantis swept source OCT. http://www.topcon-medical.eu/eu/products/177-dri-oct-1-atlantis-swept-source-oct.html. Accessed March 2015

  48. Carl Zeiss Meditec. http://www.zeiss.com/meditec/en_de/home.html

  49. Topcon. http://www.topcon-medical.eu/eu/

  50. Heidelberg Engineering. https://www.heidelbergengineering.com/us/

  51. NIDEK CO. http://www.nidek-intl.com/

  52. Optovue Inc. http://optovue.com/

  53. Which OCT should I buy. www.oftalmolog.com/Sider/artikDec10/Which.pdf

  54. Open and closed angle Glaucoma. https://classconnection.s3.amazonaws.com/33/flashcards/602033/jpg/open_angle_vs_closed_angle_glaucoma1330585756893.jpg. Accessed March 2015

  55. Sigal IA, Grimm JL, Schuman JS, Kagemann L, Ishikawa H, Wollstein G (2014) A method to estimate biomechanics and mechanical properties of optic nerve head tissues from parameters measurable using optical coherence tomography. IEEE Trans Med Imaging 33(6):1381–1389. doi:10.1109/TMI.2014.2312133

    Article  Google Scholar 

  56. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267. doi:10.1136/bjo.2005.081224

    Article  Google Scholar 

  57. Jun C, Jiang L, Yanwu X, Fengshou Y, Wong DWK, Ngan-Meng T, Dacheng T, Ching-Yu C, Tin A, Tien Yin W (2013) Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging 32(6):1019–1032. doi:10.1109/TMI.2013.2247770

    Article  Google Scholar 

  58. Foster PJ, Oen FS, Machin D et al (2000) The prevalence of glaucoma in chinese residents of singapore: a cross-sectional population survey of the tanjong pagar district. Arch Ophthalmol 118(8):1105–1111. doi:10.1001/archopht.118.8.1105

    Article  Google Scholar 

  59. Shen SY, Wong TY, Foster PJ, Loo J-L, Rosman M, Loon S-C, Wong WL, Saw S-M, Aung T (2008) The prevalence and types of glaucoma in malay people: the Singapore malay eye study. Invest Ophthalmol Vis Sci 49(9):3846–3851. doi:10.1167/iovs.08-1759

    Article  Google Scholar 

  60. Centre Eye Res. Australia Tv The economic impact of primary open angle glaucoma 2008 [Online]. http://www.nlagovau/nlaarc-86954

  61. George Ronnie M, Ramesh S, Lingam V (2010) Glaucoma in India: estimated burden of disease. J Glaucoma 19:391–397

    Article  Google Scholar 

  62. Glaucoma Research Foundation (2009). http://www.glaucoma.org/learn/glaucoma_facts.php

  63. Bussel II, Wollstein G, Schuman JS (2014) OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol 98(Suppl 2):ii15–ii19. doi:10.1136/bjophthalmol-2013-304326

    Article  Google Scholar 

  64. Burgoyne CF, Crawford Downs J, Bellezza AJ, Francis Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24(1):39–73. doi:10.1016/j.preteyeres.2004.06.001

    Article  Google Scholar 

  65. Quigley HA (2005) Glaucoma: macrocosm to microcosm the Friedenwald lecture. Invest Ophthalmol Vis Sci 46(8):2663–2670. doi:10.1167/iovs.04-1070

    Article  Google Scholar 

  66. Sigal IA (2009) Interactions between geometry and mechanical properties on the optic nerve head. Invest Ophthalmol Vis Sci 50(6):2785–2795. doi:10.1167/iovs.08-3095

    Article  Google Scholar 

  67. Ni SN, Marzilianol P, Hon-Tym W (2014) Angle closure glaucoma detection using fractal dimension index on SS-OCT images. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th annual international conference of the IEEE, 26–30 Aug. 2014 2014, pp 3885–3888. doi:10.1109/EMBC.2014.6944472

  68. Glaucoma Tests. http://www.maxivisionhospital.com/glaucoma.php

  69. Glaucoma manifestations in OCT and Funds. http://www.goodhopeeyeclinic.org.uk/images/glaucomaoctdiscs.jpg

  70. Green JS, Bear JC, Johnson GJ (1986) The burden of genetically determined eye disease. Br J Ophthalmol 70(9):696–699

    Article  Google Scholar 

  71. Cotter SA, Varma R, Ying-Lai M, Azen SP, Klein R (2006) Causes of low vision and blindness in adult latinos. Ophthalmology 113(9):1574–1582. doi:10.1016/j.ophtha.2006.05.002

    Article  Google Scholar 

  72. Iwase A, Araie M, Tomidokoro A, Yamamoto T, Shimizu H, Kitazawa Y (2006) Prevalence and causes of low vision and blindness in a Japanese adult population. Ophthalmology 113(8):1354–1362.e1351. doi:10.1016/j.ophtha.2006.04.022

    Article  Google Scholar 

  73. Ohno-Matsui K, Shimada N, Yasuzumi K, Hayashi K, Yoshida T, Kojima A, Moriyama M, Tokoro T (2011) Long-term development of significant visual field defects in highly myopic eyes. Am J Ophthalmol 152(2):256–265.e251. doi:10.1016/j.ajo.2011.01.052

    Article  Google Scholar 

  74. Hayashi K, Ohno-Matsui K, Shimada N, Moriyama M, Kojima A, Hayashi W, Yasuzumi K, Nagaoka N, Saka N, Yoshida T, Tokoro T, Mochizuki M (2010) Long-term pattern of progression of myopic maculopathy. Ophthalmology 117(8):1595–1611.e1594. doi:10.1016/j.ophtha.2009.11.003

    Article  Google Scholar 

  75. Vongphanit J, Mitchell P, Wang JJ (2002) Prevalence and progression of myopic retinopathy in an older population. Ophthalmology 109(4):704–711. doi:10.1016/S0161-6420(01)01024-7

    Article  Google Scholar 

  76. Moriyama M, Ohno-Matsui K, Hayashi K, Shimada N, Yoshida T, Tokoro T, Morita I (2011) Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology 118(8):1626–1637. doi:10.1016/j.ophtha.2011.01.018

    Article  Google Scholar 

  77. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye: an atlas and textbook [by] Michael J. Hogan, Jorge A. Alvarado [and] Joan Esperson Weddell. Saunders

  78. Curtin BJ, Teng CC (1958) Scleral changes in pathological myopia. Trans Am Acad Ophthalmol Otolaryngol 62(6):777–788 (discussion 788–790)

    Google Scholar 

  79. Curtin BJ (1985) The myopias: basic science and clinical management. Harper & Row, New York City

    Google Scholar 

  80. Curtin BJ, Iwamoto T, Renaldo DP (1979) Normal and staphylomatous sclera of high myopia. An electron microscopic study. Arch Ophthalmol 97(5):912–915

    Article  Google Scholar 

  81. McBrien NA, Gentle A (2003) Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res 22(3):307–338

    Article  Google Scholar 

  82. Park SC, De Moraes CGV, Teng CC, Tello C, Liebmann JM, Ritch R (2012) Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology 119(1):3–9. doi:10.1016/j.ophtha.2011.07.012

    Article  Google Scholar 

  83. Ohno-Matsui K. Peripapillary changes in pathologic myopia

  84. Jampol LM, Tielsch J (1992) RAce, macular degeneration, and the macular photocoagulation study. Arch Ophthalmol 110(12):1699–1700. doi:10.1001/archopht.1992.01080240039024

    Article  Google Scholar 

  85. The Eye Diseases Prevalence Research G (2004) THe prevalence of diabetic retinopathy among adults in the united states. Arch Ophthalmol 122(4):552–563. doi:10.1001/archopht.122.4.552

    Article  Google Scholar 

  86. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053. doi:10.2337/diacare.27.5.1047

    Article  Google Scholar 

  87. Day C (2001) The rising tide of type 2 diabetes. Br J Diabetes Vasc Dis 1(1):37–43. doi:10.1177/14746514010010010601

    Article  Google Scholar 

  88. Shaw J, Sicree R, Zimmet P (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  Google Scholar 

  89. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14. doi:10.1016/j.diabres.2009.10.007

    Article  Google Scholar 

  90. Thomas R, Dunstan F, Luzio S, Roy Chowdury S, Hale S, North R, Gibbins R, Owens D (2012) Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the diabetic retinopathy screening service for Wales: retrospective analysis. BMJ 344:e874

    Article  Google Scholar 

  91. Fox C, Pencina M, Meigs J, Vasan R, Levitzky Y, D’Agostino R (2006) Trends in the incidence of type 2 diabetes mellitus from the 1970 s to the 1990s. The Framingham Heart Study. Circulation 113:2814–2918

    Article  Google Scholar 

  92. Raman R, Rani PK, Reddi Rachepalle S, Gnanamoorthy P, Uthra S, Kumaramanickavel G, Sharma T (2009) Prevalence of diabetic retinopathy in India: Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetics study report 2. Ophthalmology 116(2):311–318. doi:10.1016/j.ophtha.2008.09.010

    Article  Google Scholar 

  93. Pardianto G (2005) Understanding diabetic retinopathy. Mimbar Ilmiah Oftalmologi Indonesia 2:65–66

    Google Scholar 

  94. EC Diabetic Retinopathy. http://www.emeraldeyecom/conditions/Diabetic_Retinopathyhtml

  95. Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF (2006) Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans Med Imaging 25(9):1223–1232. doi:10.1109/TMI.2006.879953

    Article  Google Scholar 

  96. Zhang Z, Srivastava R, Liu H, Chen X, Duan L, Kee Wong D, Kwoh C, Wong T, Liu J (2014) A survey on computer aided diagnosis for ocular diseases. BMC Med Inform Decis Mak 14(1):80

    Article  Google Scholar 

  97. Kowluru RA, Chan P-S (2008) Capillary dropout in diabetic retinopathy. In: Duh EJ, Veves A (eds) Diabetic retinopathy contemporary diabetes. Humana Press, New York City, pp 265–282. doi:10.1007/978-1-59745-563-3_11

    Chapter  Google Scholar 

  98. Kanski JJ, Bowling B (2011) Clinical ophthalmology: a systematic approach, 7th edn. Elsevier Health Sciences, London

    Google Scholar 

  99. Al-Mujaini A, Wali UK, Azeem S (2013) Optical coherence tomography: clinical applications in medical practice. Oman Med J 28(2):86–89. doi:10.5001/omj.2013.24

    Article  Google Scholar 

  100. Browning DJ (2010) Diabetic macular edema. In: Browning DJ (ed) Diabetic retinopathy. Springer, New York, pp 141–202. doi:10.1007/978-0-387-85900-2_7

    Chapter  Google Scholar 

  101. Jelinek HE, Cree MJ (2009) Automated image detection of retinal pathology. Taylor & Francis, New York

    Book  Google Scholar 

  102. Keltner JL, Johnson CA, Quigg JM et al (2000) Confirmation of visual field abnormalities in the ocular hypertension treatment study. Arch Ophthalmol 118(9):1187–1194. doi:10.1001/archopht.118.9.1187

    Article  Google Scholar 

  103. Xu J, Ishikawa H, Wollstein G, Bilonick RA, Folio LS, Nadler Z, Kagemann L, Schuman JS (2013) Three-dimensional spectral-domain optical coherence tomography data analysis for glaucoma detection. PLoS ONE 8(2):e55476. doi:10.1371/journal.pone.0055476

    Article  Google Scholar 

  104. Hu Z, Abràmoff MD, Kwon YH, Lee K, Garvin MK (2010) Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head. Invest Ophthalmol Vis Sci 51(11):5708–5717. doi:10.1167/iovs.09-4838

    Article  Google Scholar 

  105. Kyungmoo L, Niemeijer M, Garvin MK, Kwon YH, Sonka M, Abramoff MD (2010) Segmentation of the optic disc in 3-D OCT scans of the optic nerve head. IEEE Trans Med Imaging 29(1):159–168. doi:10.1109/TMI.2009.2031324

    Article  Google Scholar 

  106. Lee K, Niemeijer M, Garvin MK, Kwon YH, Sonka M, Abràmoff MD (2009) 3-D segmentation of the rim and cup in spectral-domain optical coherence tomography volumes of the optic nerve head, pp 72622D–72629

  107. Abràmoff MD, Lee K, Niemeijer M, Alward WLM, Greenlee EC, Garvin MK, Sonka M, Kwon YH (2009) Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head. Invest Ophthalmol Vis Sci 50(12):5778–5784. doi:10.1167/iovs.09-3790

    Article  Google Scholar 

  108. Hu Z, Niemeijer M, Lee K, Abràmoff MD, Sonka M, Garvin MK (2009) Automated segmentation of the optic disc margin in 3-D optical coherence tomography images using a graph-theoretic approach, pp 72620U–72611

  109. Kwon Y HZ, Abramoff M, Lee K, Garvin M (2010) Automated segmentation of neural canal opening and optic cup in SD-OCT images. Annual Am Glaucoma Soc Meeting

  110. Garvin MK (2010) Automated segmentation of the optic canal in 3D spectral-domain OCT of the optic nerve head (ONH) using retinal vessel suppression. Association for Research in Vision and Ophthalmology (ARVO)

  111. Curtin BJ (1977) The posterior staphyloma of pathologic myopia. Trans Am Ophthalmol Soc 75:67–86

    Google Scholar 

  112. Imamura Y, Iida T, Maruko I, Zweifel SA, Spaide RF (2011) Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula. Am J Ophthalmol 151(2):297–302. doi:10.1016/j.ajo.2010.08.014

    Article  Google Scholar 

  113. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T (2011) Morphologic choroidal and scleral changes at the macula in tilted disc syndrome with staphyloma using optical coherence tomography. Invest Ophthalmol Vis Sci 52(12):8763–8768. doi:10.1167/iovs.11-8195

    Article  Google Scholar 

  114. Ohno-Matsui K, Akiba M, Modegi T, Tomita M, Ishibashi T, Tokoro T, Moriyama M (2012) Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia. Invest Ophthalmol Vis Sci 53(10):6046–6061. doi:10.1167/iovs.12-10161

    Article  Google Scholar 

  115. Lim LS, Cheung G, Lee SY (2014) Comparison of spectral domain and swept-source optical coherence tomography in pathological myopia. Eye (Lond) 28(4):488–491. doi:10.1038/eye.2013.308

    Article  Google Scholar 

  116. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, Gibson A, Sy J, Rundle AC, Hopkins JJ, Rubio RG, Ehrlich JS (2012) Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119(4):789–801. doi:10.1016/j.ophtha.2011.12.039

    Article  Google Scholar 

  117. Muqit MMK, Stanga PE (2014) Fourier-domain optical coherence tomography evaluation of retinal and optic nerve head neovascularisation in proliferative diabetic retinopathy. Br J Ophthalmol 98(1):65–72. doi:10.1136/bjophthalmol-2013-303941

    Article  Google Scholar 

  118. Cho H, Alwassia AA, Regiatieri CV, Zhang JY, Baumal C, Waheed N, Duker JS (2013) Retinal neovascularization secondary to proliferative diabetic retinopathy characterized by spectral domain optical coherence tomography. Retina 33(3):542–547. doi:10.1097/IAE.0b013e3182753b6f

    Article  Google Scholar 

  119. Yu L, Chen Z (2010) Doppler variance imaging for three-dimensional retina and choroid angiography. J Biomed Opt 15(1):016029. doi:10.1117/1.3302806

    Article  MathSciNet  Google Scholar 

  120. Iwasaki T, Miura M, Matsushima C, Yamanari M, Makita S, Yasuno Y (2008) Three-dimensional optical coherence tomography of proliferative diabetic retinopathy. Br J Ophthalmol 92(5):713. doi:10.1136/bjo.2007.135319

    Article  Google Scholar 

  121. OCT for Detecting diabetic retinoapathy. http://optometrist.com.au/detecting-diabetic-retinopathy/#sthash.85X0ifbs.dpuf

  122. Alliance for Eye and Vision Research (AEVR). http://www.eyeresearch.org/naevr_action/oct_briefing.html

  123. Cystoid Macular Edema (CME). http://www.kellogg.umich.edu/patientcare/conditions/cystoid.macular.edema.html. Accessed 02 July 15

  124. Wilkins GR, Houghton OM, Oldenburg AL (2012) Automated segmentation of intraretinal cystoid fluid in optical coherence tomography. IEEE Trans Biomed Eng 59(4):1109–1114. doi:10.1109/TBME.2012.2184759

    Article  Google Scholar 

  125. Miura M, Hong Y-J, Yasuno Y, Muramatsu D, Iwasaki T, Goto H (2015) Three-dimensional vascular imaging of proliferative diabetic retinopathy by doppler optical coherence tomography. Am J Ophthalmol 159(3):528–538.e523. doi:10.1016/j.ajo.2014.12.002

    Article  Google Scholar 

  126. Josifova T, Henrich PB, Guber J (2010) Int J Comput Assist Radiol Surg 5(1):28–34. doi:10.1007/s11548-010-0432-9

    Google Scholar 

  127. Pachiyappan A, Das U, Murthy TV, Tatavarti R (2012) Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images. Lipids Health Dis 11(1):73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman.

Ethics declarations

Conflict of interest

The authors have no financial interest or conflict of interest regarding the material presented in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Fraz, M.M. & Barman, S.A. Computer Vision Techniques Applied for Diagnostic Analysis of Retinal OCT Images: A Review. Arch Computat Methods Eng 24, 449–465 (2017). https://doi.org/10.1007/s11831-016-9174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9174-3

Keywords

Navigation