Skip to main content
Log in

Topology Optimization in Aircraft and Aerospace Structures Design

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Topology optimization has become an effective tool for least-weight and performance design, especially in aeronautics and aerospace engineering. The purpose of this paper is to survey recent advances of topology optimization techniques applied in aircraft and aerospace structures design. This paper firstly reviews several existing applications: (1) standard material layout design for airframe structures, (2) layout design of stiffener ribs for aircraft panels, (3) multi-component layout design for aerospace structural systems, (4) multi-fasteners design for assembled aircraft structures. Secondly, potential applications of topology optimization in dynamic responses design, shape preserving design, smart structures design, structural features design and additive manufacturing are introduced to provide a forward-looking perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

References

  1. Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip Optim 28:87–98

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett RT (1992) Fastener design manual. NASA reference publication 1228

  4. Beauchamps CH, Nadolink RH, Dickinson SC, Dean LM (1992) Proceedings I European conference on smart structures and materials, Glasgow, SPIE 1777:189

  5. Beckers M (1999) Topology optimization using a dual method with discrete variables. Struct Optim 17:14–24

    Article  MathSciNet  Google Scholar 

  6. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 10:193–202

    Article  Google Scholar 

  7. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using homogenization. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  8. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  9. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  10. Bianchi G, Aglietti GS, Richardson G (2007) Optimization of bolted joints connecting honeycomb panels. In: 1st CEAS, 10th European conference on spacecraft structures, materials and mechanical testing, Berlin, Germany, 10–13 Sept 2007

  11. Bojczuk D, Szteleblak W (2008) Optimization of layout and shape of stiffeners in 2D structures. Comput Struct 86:1436–1446

    Article  Google Scholar 

  12. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM: Control Optim Calc Var 9:19–48

    Article  MathSciNet  MATH  Google Scholar 

  13. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  14. Bruyneel M, Duysinx P (2005) Note on topology optimization of continuum structures including self-weight. Struct Multidiscip Optim 29:245–256

    Article  Google Scholar 

  15. Bruyneel M, Duysinx P, Fleury C (2002) A family of MMA approximations for structural optimization. Struct Multidiscip Optim 24:263–276

    Article  Google Scholar 

  16. Buhl T (2002) Simultaneous topology optimization of structure and supports. Struct Multidiscip Optim 23:336–346

    Article  Google Scholar 

  17. Bushnell D, Rankin C (2005) Optimum design of stiffened panels with substiffeners. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, pp 1–54

  18. Cai WW, Hsieh CC, Long YF, Marin SP, Oh KP (2006) Digital panel assembly methodologies and applications for compliant sheet components. J Manuf Sci Eng-Trans ASME 128:270–279

    Article  Google Scholar 

  19. Camanho PP, Matthews FL (1997) Stress analysis and strength prediction of mechanically fastened joints in FRP: a review. Compos A Appl Sci Manuf 28:529–547

    Article  Google Scholar 

  20. Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(6):313–346

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Des 40:951–962

    Article  MathSciNet  Google Scholar 

  22. Cheng KT, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17:305–323

    Article  MathSciNet  MATH  Google Scholar 

  23. Chickermane H, Gea HC (1997) Design of multi-component structural systems for optimal layout topology and joint locations. Eng Comput 13:235–243

    Article  Google Scholar 

  24. Chickermane H, Gea HC, Yang RJ, Chuang CH (1999) Optimal fastener pattern design considering bearing loads. Struct Optim 17:140–146

    Article  Google Scholar 

  25. Chintapalli S, Elsayed MS, Sedaghati R, Abdo M (2010) The development of a preliminary structural design optimization method of an aircraft wing-box skin-stringer panels. Aerosp Sci Technol 14:188–198

    Article  Google Scholar 

  26. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38

    Article  MathSciNet  Google Scholar 

  27. Ding X, Yamazaki K (2004) Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design). Struct Multidiscip Optim 26:99–110

    Article  Google Scholar 

  28. Donders S, Takahashi Y, Hadjit R et al (2009) A reduced beam and joint concept modeling approach to optimize global vehicle body dynamics. Finite Elem Anal Des 45(6):439–455

    Article  Google Scholar 

  29. Ekh J, Schön J (2008) Finite element modelling and optimization of load transfer in multi-fastener joints using structural elements. Compos Struct 82(2):245–256

    Article  Google Scholar 

  30. Eschenauer HA, Kobelev HA, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  31. Fleury C (1989) First and second order convex approximation strategies in structural optimization. Struct Optim 1:3–10

    Article  Google Scholar 

  32. Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23:409–428

    Article  MathSciNet  MATH  Google Scholar 

  33. Gao HH, Zhu JH, Zhang WH, Zhou Y (2015) An improved adaptive constraint aggregation for integrated layout and topology optimization. Comput Methods Appl Mech Eng 289:387–408

    Article  MathSciNet  Google Scholar 

  34. Gaynor AT, Guest JK (2014) Topology optimization for additive manufacturing: considering maximum overhang constraint. In: 15th AIAA/ISSMO multidisciplinary analysis and optimization conference, 16–20 June 2014, Atlanta, GA

  35. Gea HC, Luo J (1999) Automated optimal stiffener pattern design. J Struct Mech 27:275–292

    Google Scholar 

  36. Gersborg AR, Andreasen CS (2011) An explicit parameterization for casting constraints in gradient driven topology optimization. Struct Multidiscip Optim 44:875–881

    Article  Google Scholar 

  37. Granville D, Reginster P, Lombard Y (2001) SAMCEF DESIGN, a new object oriented environment for the design of mechanical systems. European Space Agency, (Special Publication) ESA SP 468:309–315

  38. Grihon S, Krog L, Bassir D (2009) Numerical optimization applied to structure sizing at AIRBUS: a multi-step process. Int J Simul Multi Des Optim 3:432–442

    Article  Google Scholar 

  39. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198

    Article  MathSciNet  MATH  Google Scholar 

  40. Guest JK (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37(5):463–473

    Article  MathSciNet  MATH  Google Scholar 

  41. Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  42. Guo X, Cheng GD (2010) Recent development in structural design and optimization. Acta Mech Sin 26:807–823

    Article  MathSciNet  MATH  Google Scholar 

  43. Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378

    Article  MathSciNet  MATH  Google Scholar 

  44. Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Multidiscip Optim 11:1–12

    Article  Google Scholar 

  45. Hansen LU, Horst P (2008) Multilevel optimization in aircraft structural design evaluation. Comput Struct 86:104–118

    Article  Google Scholar 

  46. Hao XY, Li M, Jia HG, Xuan M (2010) Optimal design of strap-down inertial navigation support under random loads. In: 2010 IEEE international conference on information and automation (ICIA). IEEE, pp 1251–1255

  47. Hao P, Wang B, Li G, Meng Z, Tian K, Tang X (2014) Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method. Thin-Walled Struct 82:46–54

    Article  Google Scholar 

  48. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. J Aerosp Eng 221:535–552

    Google Scholar 

  49. Hartl DJ, Lagoudas DC, Calkins FT, Mabe JH (2010) Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization. Smart Mater Struct 19:015020

    Article  Google Scholar 

  50. Harzheim L, Graf G (2006) A review of optimization of cast parts using topology optimization. Struct Multidiscip Optim 31:388–399

    Article  Google Scholar 

  51. Huang X, Xie YM (2010) Topology optimization of continuum structures: methods and applicationsn. Wiley, Chichester

    Book  Google Scholar 

  52. Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41:671–683

    Article  MathSciNet  Google Scholar 

  53. Huang X, Zhou SW, Xie YM, Li Q (2013) Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 67:397–407

    Article  Google Scholar 

  54. Inoyama D, Sanders BP, Joo JJ (2008) Topology optimization approach for the determination of the multiple-configuration morphing wing structure. J Aircr 45:1853–1862

    Article  Google Scholar 

  55. Jang G-W, Jeong JH, Kim YY, Sheen D, Park C, Kim M-N (2003) Checkerboard-free topology optimization using non-conforming finite elements. Int J Numer Methods Eng 57:1717–1735

    Article  MATH  Google Scholar 

  56. Jang G-W, Shim HS, Kim YY (2009) Optimization of support locations of beam and plate structures under self-weight by using a sprung structure model. J Mech Des 131:021005

    Article  Google Scholar 

  57. Jiang T, Chirehdast M (1997) A systems approach to structural topology optimization: designing optimal connections. J Mech Des 119:40

    Article  Google Scholar 

  58. Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130:203–226

    Article  MathSciNet  MATH  Google Scholar 

  59. Kang Z, Wang YQ (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13

    Article  MathSciNet  MATH  Google Scholar 

  60. Kim SI, Kim YY (2014) Topology optimization of planar linkage mechanisms. Int J Numer Methods Eng 98(4):265–286

    Article  Google Scholar 

  61. Kim YY, Jang G-W, Park JH, Hyun JS, Nam, SJ (2007) Automatic synthesis of a planar linkage mechanism with revolute joints by using spring-connected rigid block models. J Mech Des Trans ASME 129:930–940

  62. Kohn R, Strang G (1986) Optimal design and relaxation of variational problems (part I). Commun Pure Appl Math 39(1):113–137

    Article  MathSciNet  MATH  Google Scholar 

  63. Kohn R, Strang G (1986) Optimal design and relaxation of variational problems (part II). Commun Pure Appl Math 39(2):139–182

    Article  MathSciNet  MATH  Google Scholar 

  64. Kohn R, Strang G (1986) Optimal design and relaxation of variational problems (part III). Commun Pure Appl Math 39(3):353–377

    Article  MathSciNet  MATH  Google Scholar 

  65. Krog L, Tucker A, Rollema G (2002) Application of topology, sizing and shape optimization methods to optimal design of aircraft components. In: Proceedings of 3rd Altair UK HyperWorks users conference

  66. Krog L, Tucker A, Kemp M, Boyd R (2004) Topology optimization of aircraft wing box ribs. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, pp 1–11

  67. Kudva J (2004) Overview of the DARPA smart wing project. J Intell Mater Syst Struct 15:261–267

    Article  Google Scholar 

  68. Langelaar M, Yoon GH, Kim YY, van Keulen F (2011) Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization. Int J Numer Methods Eng 88:817–840

    Article  MATH  Google Scholar 

  69. Leiva JP, Watson BC, Kosaka I (2004) An analytical bi-directional growth parameterization to obtain optimal castable topology designs. In: Proceedings of 10th AIAA/ISSMO symposium on multidisciplinary analysis and optimization. Albany, NY

  70. Li Q, Steven GP, Xie YM (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscip Optim 22(3):230–239

    Article  Google Scholar 

  71. Li Q, Steven GP, Xie YM (2001) Evolutionary structural optimization for connection topology design of multi-component systems. Eng Comput 18(3/4):460–479

    Article  MATH  Google Scholar 

  72. Li Y, Xin X, Kikuchi N, Saitou K (2001) Optimal shape and location of piezoelectric materials for topology optimization of flextensional actuators. In: Proceedings of 2001 genetic and evolutionary computations conference, pp 1085–1089

  73. Liu ST, Li QH, Chen WJ, Tong LY (2014) H-DGTP a heaviside-function based directional growth topology parameterization for design optimization of Stiffener’s layout and heights of thin-walled structures. In: 11th World Congress on computational mechanics (WCCM XI), Barcelona, Spain

  74. Liu H, Zhang WH, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim. doi:10.1007/s00158-014-1218-4

    MathSciNet  Google Scholar 

  75. Lu J, Chen Y (2012) Manufacturable mechanical part design with constrained topology optimization. Proc Inst Mech Eng Part B J Eng Manuf 226:1727–1735

    Article  Google Scholar 

  76. Luo J, Gea H (1998) A systematic topology optimization approach for optimal stiffener design. Struct Optim 16:280–288

    Article  Google Scholar 

  77. Luo J, Gea HC (2003) Optimal stiffener design for interior sound reduction using a topology optimization based approach. J Vib Acoust 125:267–273

    Article  Google Scholar 

  78. Martinez MP, Messac A, Rais-Rohani M (2001) Manufacturability-based optimization of aircraft structures using physical programming. AIAA J 39(3):517–525

    Article  Google Scholar 

  79. Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39:71–87

    Article  Google Scholar 

  80. Michailidis G (2014) Manufacturing constraints and multi-phase shape and topology optimization via a level-set method. PhD thesis, Department of Applied Mathematics, Ecole Polytechnique

  81. Moumni Z, Zaki W, Nguyen QS (2008) Theoretical and numerical modeling of solid–solid phase change: application to the description of the thermomechanical behavior of shape memory alloys. Int J Plast 24:614–645

    Article  MATH  Google Scholar 

  82. Moussa MO, Moumni Z, Doaré O, Touzé C, Zaki W (2012) Non-linear dynamic thermomechanical behaviour of shape memory alloys. J Intell Mater Syst Struct 23:1593–1611

    Article  Google Scholar 

  83. Niu MCY (1988) Airframe structural design: practical design information and data on aircraft structures. Technical Book Co, Los Angeles, CA

    Google Scholar 

  84. Niu C (1999) Airframe structural design: practical design information and data on aircraft structures. Conmilit Press Limited, Hong Kong

    Google Scholar 

  85. Oberndorfer JM, Achtziger W, Hörnlein HR (1996) Two approaches for truss topology optimization: a comparison for practical use. Struct Optim 11:137–144

    Article  Google Scholar 

  86. Oh JH, Kim YG, Lee DG (1997) Optimum bolted joints for hybrid composite materials. Compos Struct 38(1):329–341

    Article  MathSciNet  Google Scholar 

  87. Oinonen A, Tanskanen P, Björk T, Marquis G (2010) Pattern optimization of eccentrically loaded multi-fastener joints. Struct Multidiscip Optim 40(1–6):597–609

    Article  Google Scholar 

  88. Patnaik SN, Hopkins DA (2000) General-purpose optimization method for multidisciplinary design applications. Adv Eng Softw 31(1):57–63

    Article  Google Scholar 

  89. Patnaik SN, Gendy AS, Hopkins DA (1994) Design optimization of large structural systems with substructuring in a parallel computational environment. Comput Syst Eng 5(4):425–440

    Article  Google Scholar 

  90. Poon C, Xiong Y (1995) Design of bolted joints for composite structures. Woodhead Publishing Limited, UK, pp 629–636

    Google Scholar 

  91. Qian Z, Ananthasuresh GK (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Des Struct Mach 32:165–193

    Article  Google Scholar 

  92. Qiao HT, Liu ST (2009) Concurrent optimum design of components layout and connection in a structure. Chin J Theor Appl Mech 41(2):222–228

    MathSciNet  Google Scholar 

  93. Querin OM, Young V (2000) Computational efficiency and validation of bi-directional evolutionary structure optimization. Comput Methods Appl Mech Eng 189:559–573

    Article  MATH  Google Scholar 

  94. Rais-Rohani M, Lokits J (2007) Reinforcement layout and sizing optimization of composite submarine sail structures. Struct Multidiscip Optim 34:75–90

    Article  Google Scholar 

  95. Ramani A (2010) A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials. Struct Multidiscip Optim 41:913–934

    Article  Google Scholar 

  96. Reich GW, Sanders B, Joo JJ (2007) Development of skins for morphing aircraft applications via topology optimization. J Intell Mater Syst Struct 20:1–13

    Google Scholar 

  97. Remouchamps A, Bruyneel M, Fleury C, Grihon S (2011) Application of a bi-level scheme including topology optimization to the design of an aircraft pylon. Struct Multidiscip Optim 44:739–750

    Article  Google Scholar 

  98. Rong JH, Xie YM, Yang XY, Liang QQ (2000) Topology optimization of structures under dynamic response constraints. J Sound Vib 234:177–189

    Article  Google Scholar 

  99. Rong JH, Tang ZL, Xie YM, Li FY (2013) Topological optimization design of structures under random excitations using SQP method. Eng Struct 56:2098–2106

    Article  Google Scholar 

  100. Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21:90–108

    Article  Google Scholar 

  101. Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237

    Article  MathSciNet  MATH  Google Scholar 

  102. Santiago OF, Reutlingen TSE (2002) Automatic welding spot minimization with BOSS Quattro. BOSS Quattro Documentation, Siemens-Samtech

    Google Scholar 

  103. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528

    Article  MathSciNet  MATH  Google Scholar 

  104. Shan P (2008) Optimal embedding objects in the topology design of structure. Master thesis of Dalian University of Technology

  105. Shapiro V (1988) Theory of R-functions and applications: a primer. Technical Report, Cornell University

  106. Shu L, Wang MY, Fang ZD, Ma ZD, Wei P (2011) Level set based structural topology optimization for minimizing frequency response. J Sound Vib 330:5820–5834

    Article  Google Scholar 

  107. Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Structure and Multidisciplinary Optimization. 21:120–127

    Article  Google Scholar 

  108. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  109. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  110. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscip Optim. 16:68–75

    Article  Google Scholar 

  111. Sokołowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37:1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  112. Stanford B, Beran P (2012) Optimal compliant flapping mechanism topologies with multiple load cases. J Mech Des 134(5):051007

  113. Stanford B, Beran P, Kobayashi M (2013) Simultaneous topology optimization of membrane wings and their compliant flapping mechanisms. AIAA J 51:1431–1441

    Article  Google Scholar 

  114. Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318

    Article  MATH  Google Scholar 

  115. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  116. Svanberg K (1995) A globally convergent version of MMA without linesearch. In: 1st World Congress of structural and multidisciplinary optimization. Pergamon, New York

  117. Svanberg K (2007) On a globally convergent version of MMA. In: 7th World Congress on structural and multidisciplinary optimization. COEX Seoul, Korea

  118. Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191:5485–5498

    Article  MATH  Google Scholar 

  119. Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622

    Article  MATH  Google Scholar 

  120. Tomlin M, Meyer J (2011) Topology optimization of an additive layer manufactured (ALM) aerospace part. In: The 7th Altair CAE technology conference

  121. Van Dijk N, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472

    Article  MathSciNet  Google Scholar 

  122. Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A-Struct 273:134–148

    Article  Google Scholar 

  123. Vitali R, Park O, Haftka RT, Sankar BV, Rose CA (2002) Structural optimization of a hat-stiffened panel using response surfaces. J Aircr 39(1):158–166

    Article  Google Scholar 

  124. Wang MY, Chen SK, Wang XM, Mel YL (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127:941–956

    Article  Google Scholar 

  125. Wang B, Hao P, Li G, Tian K, Du K, Wang X, Zhang X, Tang X (2014) Two-stage size-layout optimization of axially compressed stiffened panels. Struct Multidiscip Optim 50(2):313–327

    Article  Google Scholar 

  126. Wang B, Hao P, Li G, Zhang JX, Du KF, Tian K, Wang XJ, Tang XH (2014) Optimum design of hierarchical stiffened shells for low imperfection sensitivity. Acta Mech Sin 30:391–402

    Article  Google Scholar 

  127. Watson A, Featherston CA, Kennedy D (2007) Optimization of postbuckled stiffened panels with multiple stiffener sizes. In: Proceedings of the forty eighth AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Honolulu, Hawaii, pp 23–26

  128. Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542

    Article  MathSciNet  Google Scholar 

  129. Xia L, Breitkopf P (2014) A reduced multiscale model for nonlinear structural topology. Comput Methods Appl Mech Eng 280:117–134

    Article  MathSciNet  Google Scholar 

  130. Xia L, Breitkopf P (2015) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147–167

    Article  MathSciNet  Google Scholar 

  131. Xia Q, Shi T, Wang MY, Liu S (2010) A level set based method for the optimization of cast part. Struct Multidiscip Optim 41:735–747

    Article  Google Scholar 

  132. Xia L, Zhu JH, Zhang WH (2012) A superelement formulation for the efficient layout design of complex multi-component system. Struct Multidiscip Optim 45:643–655

    Article  MathSciNet  MATH  Google Scholar 

  133. Xia L, Zhu JH, Zhang WH (2012) Sensitivity analysis with the modified Heaviside function for the optimal layout design of multi-component systems. Comput Methods Appl Mech Eng 241–244:142–154

    Article  MathSciNet  Google Scholar 

  134. Xia L, Zhu JH, Zhang WH, Breitkopf P (2013) An implicit model for the integrated optimization of component layout and structure topology. Comput Methods Appl Mech Eng 257:87–102

    Article  MathSciNet  MATH  Google Scholar 

  135. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Article  Google Scholar 

  136. Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  137. Xie K, Wells L, Camelio JA, Youn BD (2007) Variation propagation analysis on compliant assemblies considering contact interaction. ASME 129:934–942

    Article  Google Scholar 

  138. Yan X, Huang X, Zha Y, Xie YM (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110

    Article  Google Scholar 

  139. Yang XY, Xie YM (2003) Perimeter control in the bi-direction evolutionary optimization method. Struct Multidiscip Optim 24:430–440

    MathSciNet  Google Scholar 

  140. Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23:49–62

    Article  Google Scholar 

  141. Yoon GH (2010) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199:1744–1763

    Article  MathSciNet  MATH  Google Scholar 

  142. Zhang WH, Duysinx P (2003) Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization. Comput Struct 81:2173–2181

    Article  Google Scholar 

  143. Zhang WH, Sun SP (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68:993–1011

    Article  MATH  Google Scholar 

  144. Zhang WH, Zhu JH (2006) A new finite-circle family method for optimal multi-component packing design. WCCM VII, Los Angeles

    Google Scholar 

  145. Zhang WH, Xia L, Zhu JH, Zhang Q (2011) Some recent advances in the integrated layout design of multicomponent systems. ASME J Mech Des 133:104503-1–10450315

    Google Scholar 

  146. Zhang J, Zhang WH, Zhu JH, Xia L (2012) Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput Methods Appl Mech Eng 245:75–89

    Article  MathSciNet  Google Scholar 

  147. Zhang WS, Sun G, Guo X, Shan P (2013) A level set-based approach for simultaneous optimization of the structural topology and the layout of embedding structural components. Eng Mech 30(7):22–27

    Google Scholar 

  148. Zhang WS, Zhang WL, Guo X (2015) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2015.03.007

    MathSciNet  Google Scholar 

  149. Zhao MY, Yang L, Wan XP (1996) Load distribution in composite multifastener joints. Comput Struct 60(2):337–342

    Article  Google Scholar 

  150. Zhou M (2001) Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21:80–83

    Article  Google Scholar 

  151. Zhou M (2004) Topology optimization for shell structures with linear buckling responses. WCCM VI, Beijing, China

    Google Scholar 

  152. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224

    Article  Google Scholar 

  153. Zhou M, Fleury R, Shyy Y-K, Thomas H, Brennan J (2002) Progress in topology optimization with manufacturing constraints. In: Proceedings of the 9th AIAA MDO conference AIAA-2002-4901

  154. Zhu JH (2010) Advanced structural topology optimization and application. In: ASMDO conference 2010, Paris, France, 2010 June 21–23

  155. Zhu JH, Zhang WH (2006a) Coupled design of components layout and supporting structures using shape and topology optimization. In: Proceedings of CJK-OSM IV 2006, Kunming China

  156. Zhu JH, Zhang WH (2006) Maximization of structural natural frequency with optimal support layout. Struct Multidiscip Optim 31(6):462–469

    Article  Google Scholar 

  157. Zhu JH, Zhang WH (2010) Integrated layout design of supports and structures. Comput Methods Appl Mech Eng 199:557–569

    Article  MATH  Google Scholar 

  158. Zhu JH, Zhang WH, Qiu KP (2007) Bi-directional evolutionary topology optimization using element replaceable method. Comput Mech 40:97–109

    Article  MATH  Google Scholar 

  159. Zhu JH, Zhang WH, Beckers P, Chen YZ, Guo ZZ (2008) Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct Multidiscip Optim 36:29–41

    Article  MathSciNet  MATH  Google Scholar 

  160. Zhu JH, Zhang WH, Beckers P (2009) Integrated layout design of multi-component system. Int J Numer Methods Eng 78:631–651

    Article  MATH  Google Scholar 

  161. Zhu JH, Zhang WH, Xia L, Zhang Q, Bassir DH (2012) Optimal packing configuration design with finite-circle method. J Intell Robot Syst 67:185–199

    Article  MATH  Google Scholar 

  162. Zhu JH, Gu XJ, Zhang WH, Beckers P (2013) Structural design of aircraft skin stretch-forming die using topology optimization. J Comput Appl Math 246:278–288

    Article  MathSciNet  MATH  Google Scholar 

  163. Zhu JH, Gao HH, Zhang WH, Zhou Y (2014) A multi-point constraints based integrated layout and topology optimization design of multi-component systems. Struct Multidiscip Optim 51:397–407

    Article  Google Scholar 

  164. Zhu JH, Hou J, Zhang WH, Li Y (2014) Structural topology optimization with constraints on multi-fastener joint loads. Struct Multidiscip Optim 50(4):561–571

    Article  MathSciNet  Google Scholar 

  165. Zhu JH, Hou J, He F, Zhang WH (2014b) Topology optimization of assembled aircraft structure with joint load constraints. In: Proceedings of eighth China–Japan–Korea joint symposium on optimization of structural and mechanical systems, Gyeongju, Korea

  166. Zhu JH, Li Y, Zhang WH (2014d) Topology optimization with shape preserving design. In: Proceedings of 5th international conference on computational methods, Cambridge, UK

Download references

Acknowledgments

The authors would like to thank Prof. Moumni Zied from Ecole nationale supérieure de techniques avancées in France, Dr. Zheng Weidong, Dr. Zeng Dujuan and Dr. Wang Lipeng from China Academy of Launch Vehicle Technology, Dr. Yang Jun and Dr. Chang Nan from Chengdu Aircraft Design Institute, Prof. Chen Yuze and Dr. Mo Jun from China Academy of Engineering Physics for valuable discussions. This work is supported by National Natural Science Foundation of China (11432011, 11172236), the 111 Project (B07050), Science and Technology Research and development Projects in Shaanxi Province (2014KJXX-37), the Fundamental Research Funds for the Central Universities (3102014JC02020505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Hong Zhu or Liang Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JH., Zhang, WH. & Xia, L. Topology Optimization in Aircraft and Aerospace Structures Design. Arch Computat Methods Eng 23, 595–622 (2016). https://doi.org/10.1007/s11831-015-9151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9151-2

Keywords

Navigation