Skip to main content
Log in

Multiscale Modeling of Complex Dynamic Problems: An Overview and Recent Developments

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Multiscale modeling aims to solve problems at the engineering (macro) scale while considering the complexity of the microstructure with minimum cost. Generally, two scales are considered in multiscale modeling: small scale, which is designed to capture the mechanical phenomena at the atomistic, molecular or molecular cluster level, and large scale which is connected to continuous description. For each scale, well-established numerical methods have been developed over the years to handle the relevant phenomena. As a first part of this paper, the most popular numerical methods, used at different scales, as well as the coupling approaches between them are classified, according to their features and applications, so that the place of those used in multiscale modeling can be distinguished. Subsequently, the class of concurrent discrete–continuum coupling approaches, which is well adapted for dynamic studies of complex multiscale problems, is reviewed. Several techniques used in this class are also detailed. Among them, the bridging domain (BD) technique is used to develop a discrete–continuum coupling approach, adapted for dynamic simulations, between the Discrete Element Method and the Constrained Natural Element Method (CNEM). This approach is applied to study the BD coupling parameters in dynamics. Several results giving more light on the setting of these parameters in practice are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

References

  1. Abraham FF, Walkup R, Gao H, Duchaineau M, Diaz De La Rubia T, Seager M (2002) Simulating materials failure by using up to one billion atoms and the world’s fastest computer: brittle fracture. Proc Natl Acad Sci USA 99(9):5777–5782

    Article  Google Scholar 

  2. Adelman S, Doll J (1976) Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J Chem Phys 64:2375–2388

    Article  Google Scholar 

  3. Akbari RA, Kerfriden P, Rabczuk T, Bordas S (2012) An adaptive multiscale method for fracture based on concurrent—hierarchical hybrid modelling. In: Proceedings of the 20th UK conference of the Association for Computational Mechanics in Engineering (2012)

  4. Alder B, Wainwright T (1957) Phase transition for a hard sphere system. J Chem Phys 27:1208–1209

    Article  Google Scholar 

  5. Alder B, Wainwright T (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31:459–466

    Article  MathSciNet  Google Scholar 

  6. André D, Iordanoff I, Charles J, Néauport J (2012) Discrete element method to simulate continuous material by using the cohesive beam model. Comput Methods Appl Mech Eng 213–216:113–125

    Article  Google Scholar 

  7. André D, Jebahi M, Iordanoff I, Charles JL, Néauport J (2013) Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter. Comput Methods Appl Mech Eng 265:136–147

    Article  MATH  Google Scholar 

  8. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MPLG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MATH  MathSciNet  Google Scholar 

  9. Aubertin P, Réthoré J, De Borst R (2009) Energy conservation of atomistic/continuum coupling. Int J Numer Methods Eng 78:1365–1386

    Article  MATH  Google Scholar 

  10. Bauman PL, Ben Dhia H, Elkhodja N, Oden JT, Prudhomme S (2008) On the application of the Arlequin method to the coupling of particle and continuum models. Comput Mech 42:511–530

    Article  MATH  MathSciNet  Google Scholar 

  11. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  12. Belytschko T, Loehnert S, Song JH (2008) Multiscale aggregating discontinuities: a method for circumventing loss of material stability. Int J Numer Methods Eng 73(6):869–894

    Article  MATH  MathSciNet  Google Scholar 

  13. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  14. Belytschko T, Xiao SP (2003) Coupling methods for continuum model with molecular model. Int J Multiscale Comput Eng 1(1):115–126

    Article  Google Scholar 

  15. Ben Dhia H (1998) Problèmes mécanique multi-échelles: la méthode Arlequin. Comptes rendus de l ’académie des sciences - Analyse numérique, pp 899–904 (1998)

  16. Ben Dhia H (2008) Further insights by theoretical investigations of the multiscale Arlequin method. Int J Multiscale Comput Eng 60(3):215–232

    Article  Google Scholar 

  17. Ben Dhia H, Rateau G (2001) Analyse mathématique de la méthode Arlequin mixte. Comptes rendus de l ’académie des sciences - Mécanique des solides et des stuctures, pp 649–654 (2001)

  18. Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62:1442–1462

    Article  MATH  Google Scholar 

  19. Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394

    Article  MATH  MathSciNet  Google Scholar 

  20. Bobet A, Fakhimi A, Johnson S, Morris K, Tonon F, Yeung M (2009) Numerical models in discontinuous media: review of advances for rock mechanics applications. J Geotech Geoenviron Eng 135(11):1547–1561

    Article  Google Scholar 

  21. Bratberg I, Radjai F, Hansen A (2002) Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds. Phys Rev E 66:031,303

    Article  Google Scholar 

  22. Braun J, Sambridge M (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376:655–660

    Article  Google Scholar 

  23. Broughton J, Abraham F, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B 60(4):2391–2403

    Article  Google Scholar 

  24. Cai W, DeKoning M, Bulatov V, Yip S (2000) Minimizing boundary reflections in coupled-domain simulations. Phys Rev Lett 85:3213–3216

    Article  Google Scholar 

  25. Celep Z, Bažant ZP (1983) Spurious reflection of elastic waves due to gradually changing finite element size. Int J Numer Methods Eng 19:631–646

    Article  MATH  Google Scholar 

  26. Chen J, Wu C, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  27. Cueto E, Doblaré M, Gracia L (2000) Imposing essential boundary conditions in the natural element method by means of density-scaled -shapes. Int J Numer Methods Eng 49:519–546

    Article  MATH  Google Scholar 

  28. Cueto E, Sukumar N, Calvo B, Cegoñino J, Doblaré M (2003) Overview and recent advances in natural neighbour Galerkin methods. Arch Comput Methods Eng 10(4):307–384

    Article  MATH  Google Scholar 

  29. Cundall PA (1971) Computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of the symposium of the International Society of Rock Mechanics, Nancy, France

  30. Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci 25:107–116

    Article  Google Scholar 

  31. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  32. Delaunay B (1934) Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na 6:793–800

  33. Dobson M, Luskin M (2008) Analysis of a force-based quasicontinuum approximation. ESAIM Math Model Numer Anal 42(1):113–139

    Article  MATH  MathSciNet  Google Scholar 

  34. Dobson M, Luskin M, Ortner C (2010) Accuracy of quasicontinuum approximations near instabilities. J Mech Phys Solids 58(10):1741–1757

    Article  MATH  MathSciNet  Google Scholar 

  35. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23:219–230

    Article  MATH  MathSciNet  Google Scholar 

  36. Donzé FV, Richefeu V, Magnier SA (2009) Advances in discrete element method applied to soil, rock and concrete mechanics. State of the art of geotechnical engineering. Electron. J Geotech Eng 8:1–44

    Google Scholar 

  37. Weinan E, Huang Z (2002) A dynamic atomistic–continuum method for the simulation of crystalline materials. J Comput Phys 182:234–261

  38. Felici HM (1992) A coupled Eulerian/Lagrangian method for the solution of three-dimensinal vortical flows. PhD thesis, Massachusetts Institute of Technology (1992)

  39. Feyel F, Chaboche J (2000) Multiscale approach for modelling the elastoviscoplasitic behavior of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    Article  MATH  Google Scholar 

  40. Fish J, Nuggehally M, Shephard M, Picu C, Badia S, Parks M, Gunzburger M (2007) Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comput Methods Appl Mech Eng 196:4548–4560

    Article  MATH  MathSciNet  Google Scholar 

  41. Foulkes W, Mitas L, Needs R, Rajagopal G (2001) Quantum Monte Carlo simulations of solids. Rev Mod Phys 73(1):33

    Article  Google Scholar 

  42. Fourey G, Oger G, Le Touzé D, Alessandrini B (2010) Violent fluid-structure interaction simulations using a coupled SPH/FEM method. IOP Conf Ser: Mater Sci Eng 10:012041

  43. González D, Cueto E, Martínez MA, Doblaré M (2004) Numerical integration in natural neighbour Galarkin methods. Int J Numer Methods Eng 60:2077–2114

    Article  MATH  Google Scholar 

  44. Griffiths DV, Mustoe GGW (2001) Modelling of elastic continua using a grillage of structural elements based on discrete element concepts. Int J Numer Methods Eng 50(7):1759–1775

    Article  MATH  Google Scholar 

  45. Guidault PA, Belytschko T (2007) On the L2 and the H1 couplings for an overlapping domain decomposition method using Lagrange multipliers. Int J Numer Methods Eng 70:322–350

    Article  MATH  MathSciNet  Google Scholar 

  46. Guidault PA, Belytschko T (2009) Bridging domain methods for coupled atomistic–continuum models with L2 or H1 couplings. Int J Numer Methods Eng 77:1566–1592

    Article  MATH  MathSciNet  Google Scholar 

  47. Hall WS (1994) The boundary element method (solid mechanics and its applications). Springer, Berlin

    Google Scholar 

  48. Hehre W (2003) A guide to molecular mechanics and quantum chemical calculations. Wavefunction Press, Irvine

    Google Scholar 

  49. Hentz S, Donzé FV, Daudeville L (2004) Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Comput Struct 82(29–30):2509–2524

    Article  Google Scholar 

  50. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864

    Article  MathSciNet  Google Scholar 

  51. Hrennikoff A (1941) Solution of problems of elasticity by the frame-work method. ASME J Appl Mech 8:A619–A715

    MathSciNet  Google Scholar 

  52. Issa JA, Nelson RN (1992) Numerical analysis of micromechanical behaviour of granular materials. Eng Comput 9:211–223

    Article  Google Scholar 

  53. Iyer M, Gavini V (2011) A field theoretical approach to the quasi-continuum method. J Mech Phys Solids 59(8):1506–1535

    Article  MATH  MathSciNet  Google Scholar 

  54. Jean M (1999) The non smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257

    Article  MATH  MathSciNet  Google Scholar 

  55. Jebahi M (2013) Discrete-continuum coupling method for simulation of laser-induced damage in silica glass. PhD thesis, Bordeaux 1 University (2013)

  56. Jebahi M, André D, Dau F, Charles JL, Iordanoff I (2013) Simulation of Vickers indentation of silica glass. J Non-Cryst Solids 378:15–24

    Article  Google Scholar 

  57. Jebahi M, Charles J, Dau F, Illoul L, Iordanoff I (2013) 3D coupling approach between discrete and continuum models for dynamic simulations (DEM–CNEM). Comput Methods Appl Mech Eng 255:196–209

    Article  MATH  MathSciNet  Google Scholar 

  58. Jebahi M, Charles JL, Dau F, Illoul L, Iordanoff I (2012) On the H1 discrete–continuum coupling based on the Arlequin method (DEM–CNEM). In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering

  59. Kaljevic I, Saigal S (1997) An improved element free Galerkin formulation. Int J Numer Methods Eng 40:2953–2974

    Article  MATH  MathSciNet  Google Scholar 

  60. Lee CK, Zhou CE (2003) On error estimation and adaptive refinement for element free Galerkin method: Part I: Stress recovery and a posteriori error estimation. Comput Struct 82(4–5):4293–4443

    Google Scholar 

  61. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34

    Article  Google Scholar 

  62. Li S, Liu X, Agrawal A, To A (2006) Perfectly matched multiscale simulations for discrete lattice systems: extension to multiple dimensions. Phys Rev B 74:045,418

    Article  Google Scholar 

  63. Li X, Ming P (2014) On the effect of ghost force in the quasicontinuum method: dynamic problems in one dimension. Commun Computat Phys 15:647–676

    MathSciNet  Google Scholar 

  64. Lin X, Ng TT (1997) A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47(2):319–329

    Article  Google Scholar 

  65. Liszka T, Orkisz J (1980) The finite difference method at arbitrary irregular grids and its applications in applied mechanics. Comput Struct 11:83–95

    Article  MATH  MathSciNet  Google Scholar 

  66. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50:937–951

    Article  MATH  Google Scholar 

  67. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing, Singapore

  68. Liu MB, Liu GR, Lam KY (2002) Coupling meshfree particle method with molecular dynamics—a novel approach for multi-scale simulations. In: Proceedings of the 1st asian workshop on meshfree methods, advances in meshfree and X-FEM methods, pp 211–216

  69. Liu MB, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Article  MathSciNet  Google Scholar 

  70. Lu G, Kaxiras E (2005) Overview of multiscale simulations of materials. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Los Angeles

  71. Lucy LB (1977) Numerical approach to testing the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  72. Luding S, Clément E, Rajchenbach J, Duran J (1996) Simulations of pattern formation in vibrated granular media. Europhys Lett 36(4):247–252

    Article  Google Scholar 

  73. Mair HU (1995) Hydrocode methodologies for underwater explosion structure medium/interaction. Shock Vib 2:227–248

    Article  Google Scholar 

  74. Melenka JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  Google Scholar 

  75. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341

    Article  MATH  MathSciNet  Google Scholar 

  76. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  77. Moreau JJ (1994) Some numerical methods in multibody dynamics: application to granular materials. Eur J Mech A Solids 13(4):93–114

    MATH  MathSciNet  Google Scholar 

  78. Moreau JJ, Panagiotopoulos PD (1988) Nonsmooth mechanics and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  79. Nuggehally MA, Shephard MS, Picu CR, Fish J (2007) Adaptive model selection procedure for concurrent multiscale problems. Int J Multiscale Comput Eng 5(5):369–386

    Article  Google Scholar 

  80. Oñate E, Idelsohn S (1998) A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput Mech 21:283–292

    Article  MATH  MathSciNet  Google Scholar 

  81. Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139:315–346

    Article  MATH  Google Scholar 

  82. Oñate E, Sacco C, Idelsohn S (2000) A finite point method for incompressible flow problems. Comput Vis Sci 3:67–75

    Article  MATH  Google Scholar 

  83. Ortiz M, Knap J (2001) An analysis of the quasicontinuum method. J Mech Phys Solids 49(9):1899–1923

    Article  MATH  Google Scholar 

  84. Park H, Karpov E, Liu W, Klein P (2005) The bridging scale for two-dimensional atomistic/continuum coupling. Philos Mag 85(1):79–113

    Article  Google Scholar 

  85. Parka H, Karpovb E, Kleina P, Liub W (2005) Three-dimensional bridging scale analysis of dynamic fracture. J Comput Phys 207(2):588–609

    Article  Google Scholar 

  86. Payne M, Teter M, Allan D, Arias T, Joannopoulos J (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045

    Article  Google Scholar 

  87. Ragueneau F, Gatuingt F (2003) Inelastic behavior modelling of concrete in low and high strain rate dynamics. Comput Struct 81(12):1287–1299

    Article  Google Scholar 

  88. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408

    Article  MATH  MathSciNet  Google Scholar 

  89. Rapaport DC (1980) The event scheduling problem in molecular dynamic simulation. J Comput Phys 34:184–201

    Article  Google Scholar 

  90. Rodney D (2003) Mixed atomistic/continuum methods: static and dynamic quasicontinuum methods. In: Proceedings of the NATO conference: thermodynamics, microstructures and plasticity, pp 265–274 (2003)

  91. Rougier E, Munjiza A, John N (2004) Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics. Int J Numer Methods Eng 62:856–879

    Article  Google Scholar 

  92. Schlangen E, Garboczi EJ (1996) New method for simulating fracture using an elastically uniform random geometry lattice. Int J Eng Sci 34(10):1131–1144

    Article  MATH  Google Scholar 

  93. Schlangen E, van Mier JGM (1992) Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cem Concr Compos 14(2):105–118

    Article  Google Scholar 

  94. Schlangen E, van Mier JGM (1992) Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater Struct 25(9):534–542

    Article  Google Scholar 

  95. Shenoy V (1999) Quasicontinuum models of atomic-scale mechanics. PhD thesis, Brown University (1999)

  96. Shimokawa T, Mortensen J, Schiøtz J, Jacobsen K (2004) Matching conditions in the quasicontinuum method: removal of the error introduced at the interface between the coarse-grained and fully atomistic region. Phys Rev B 69(21):214,104

    Article  Google Scholar 

  97. Sibson R (1981) A brief description of natural neighbour interpolation. In: Barnett V (ed) Interpreting multivariate data. Wiley, Chichester, pp 21–36

    Google Scholar 

  98. Smith GD (1985) Numerical solution of partial differential equations: finite difference methods, 3rd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  99. Stein E, De Borst R, Hughes TJR (2004) Encyclopedia of computational mechanics, vol 1, chap 14. Wiley, London

    Book  Google Scholar 

  100. Svensson M, Humbel S, Froese R, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO/MM method for geometry optimizations and single point energy predictions. J Phys Chem 100(50):19,357–19,363

    Article  Google Scholar 

  101. Szabo A, Ostlund N (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. McGraw-Hill, New York

    Google Scholar 

  102. Tadmor E, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563

    Article  Google Scholar 

  103. Tadmor E, Phillips R, Ortiz M (1996) Mixed atomistic and continuum models of deformation in solids. Langmuir 12(19):4529–4534

    Article  Google Scholar 

  104. Tan Y, Yang D, Sheng Y (2009) Discrete element method (DEM) modelling of fracture and damage in the machining process of polycrystalline SiC. J Eur Ceram Soc 29(6):1029–1037

    Article  Google Scholar 

  105. Ting JM, Khwaja M, Meachum L, Rowell J (1993) An ellipse-based discrete element model for granular materials. Int J Anal Numer Methods Geomech 17(9):603–623

    Article  MATH  Google Scholar 

  106. To A, Li S (2005) Perfectly matched multiscale simulations. Phys Rev B 72:035,414

    Article  Google Scholar 

  107. Traversoni L (1994) Natural neighbour finite elements. In: International conference on hydraulic engineering software hydrosoft proceedings, vol 2, pp 291–297

  108. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method, 2nd edn. Pearson Education Limited, London

    Google Scholar 

  109. Voronoi G (1907) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133:97–178

    MathSciNet  Google Scholar 

  110. Wagner G, Liu W (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190(1):249–274

    Article  MATH  Google Scholar 

  111. Weinan E, Lu J, Yang J (2006) Uniform accuracy of the quasicontinuum method. Phys Rev B 74(21):214,115

    Article  Google Scholar 

  112. Xiao SP, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193(17–20):1645–1669

    Article  MATH  MathSciNet  Google Scholar 

  113. Xie W, Liu Z, Young YL (2009) Application of a coupled Eulerian-Lagrangian method to simulate interactions between deformable composite structures and compressible multiphase flow. Int J Numer Methods Eng 80:1497–1519

    Article  MATH  MathSciNet  Google Scholar 

  114. Xu M, Gracie R, Belytschko T (2009) Multiscale modeling with extended bridging domain method. In: Fish J (ed) Bridging the scales in science and engineering. Oxford Press, Oxford

    Google Scholar 

  115. Yvonnet J, Chinesta F, Lorong P, Ryckelynck D (2005) The constrained natural element method (C-NEM) for treating thermal models involving moving interfaces. Int J Therm Sci 44:559–569

  116. Yvonnet J, Ryckelynck D, Lorong P, Chinesta F (2004) A new extension of the natural element method for non-convex and discontinuous problems: the constrained natural element method (C-NEM). Int J Numer Methods Eng 60:1451–1474

    Article  MATH  MathSciNet  Google Scholar 

  117. Zang M, Chen H, Lei Z (2010) Simulation on high velocity impact process of windshield by SPH/FEM coupling method. In: International conference on information engineering, Beidaihe, China, pp 381–384 (2010)

  118. Zhu T, Altruni SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free galerkin methods. Int J Numer Methods Eng 21:211–222

    MATH  Google Scholar 

  119. Zhu Z, Lu X, Li J (2001) A study of domain decomposition and parallel computation. Acta Mech 150(3–4):219–235

  120. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

  121. Zienkiewicz OC, Taylor RL, Nithiarasu P (2005) The finite element method for fluid dynamics. Elsevier, Amsterdam

    Google Scholar 

  122. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) Finite element method: its basis & fundamentals. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Jebahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebahi, M., Dau, F., Charles, JL. et al. Multiscale Modeling of Complex Dynamic Problems: An Overview and Recent Developments. Arch Computat Methods Eng 23, 101–138 (2016). https://doi.org/10.1007/s11831-014-9136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9136-6

Navigation